Browsing by Author "Remião, Fernando"
Now showing 1 - 10 of 18
Results Per Page
Sort Options
- Adrenaline and noradrenaline: partners and actors in the same playPublication . Marisa, Vera; Carvalho, Félix; Bastos, Maria Lourdes; Albuquerque, Rui; Carvalho, Márcia; Remião, Fernando
- Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytesPublication . Costa, Vera Marisa; Silva, Renata; Tavares, Ludgero Canário; Vitorino, Rui; Amado, Francisco; Carvalho, Félix; Bastos, Maria de Lourdes; Carvalho, Márcia; Carvalho, Rui Albuquerque; Remião, FernandoThe sustained elevation of plasma and interstitial catecholamine levels, namely adrenaline (ADR), and the generation of reactive oxygen species (ROS) are well recognized hallmarks of several cardiopathologic conditions, like cardiac ischemia/reperfusion (I/R) and heart failure (HF). The present work aimed to investigate the proteomics and energetic metabolism of cardiomyocytes incubated with ADR and/or ROS. To mimic pathologic conditions, freshly isolated calcium-tolerant cardiomyocytes from adult rat were incubated with ADR alone or in the presence of a system capable of generating ROS [(xanthine with xanthine oxidase) (XXO)]. Two-dimensional electrophoresis with matrix-assisted laser desorption/ionization and time-of-flight mass spectrometer analysis were used to define protein spot alterations in the cardiomyocytes incubated with ADR and/or ROS. Moreover, the energetic metabolism and the activity of mitochondrial complexes were evaluated by nuclear magnetic resonance and spectrophotometric determinations, respectively. The protein extract was mainly constituted by cardiac mitochondrial proteins and the alterations found were included in five functional classes: (i) structural proteins, notably myosin light chain-2; (ii) redox regulation proteins, in particular superoxide dismutase (SOD); (iii) energetic metabolism proteins, encompassing ATP synthase alpha chain and dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex; (iv) stress response proteins, like the heat shock proteins; and (v) regulatory proteins, like cytochrome c and voltage-dependent anion channel 1. The XXO system elicited alterations in cardiac contractile proteins, as they showed high levels of cleavage, and also altered energetic metabolism, through increased lactate and alanine levels. The cardiomyocytes incubation with ADR resulted in an accentuated increase in mitochondrial complexes activity and the decrease in alanine/lactate ratio, thus reflecting a high cytosolic NADH/NAD(+) ratio. Furthermore, an increase in manganese SOD expression and total SOD activity occurred in the ADR group, as the increase in the mitochondrial complexes presumably led to higher 'electron leakage'. The modifications in proteins, enzymes activity, and energetic metabolism were indicative that different pathways are activated by catecholamines and ROS. These alterations altogether determine the I/R and HF specific features and contribute for the initiation or aggravation of those cardiopathologic conditions.
- Adrenaline in pro-oxidant conditions elicits intracellular survival pathways in isolated rat cardiomyocytesPublication . Costa, Vera Marisa; Silva, Renata; Ferreira, Rita; Amado, Francisco; Carvalho, Félix; Bastos, Maria de Lourdes; Carvalho, Rui Albuquerque; Carvalho, Márcia; Remião, FernandoIn several pathologic conditions, like cardiac ischemia/reperfusion, the sustained elevation of plasma and interstitial catecholamine levels, namely adrenaline (ADR), and the generation of reactive oxygen species (ROS) are hallmarks. The present work aimed to investigate in cardiomyocytes which intracellular signalling pathways are altered by ADR redox ability. To mimic pathologic conditions, freshly isolated calcium tolerant cardiomyocytes from adult rat were incubated with ADR alone or in the presence of a system capable of generating ROS [(xanthine with xanthine oxidase) (X/XO)]. ADR elicited a pro-oxidant signal with generation of reactive species, which was largely magnified by the ROS generating system. However, no change in cardiomyocytes viability was observed. The pro-oxidant signal promoted the translocation to the nucleus of the transcription factors, Heat shock factor-1 (HSF-1) and Nuclear factor-kappaB (NF-kappaB). In addition, proteasome activity was compromised in the experimental groups where the generation of reactive species occurred. The decrease in the proteasome activity of the ADR group resulted from its redox sensitivity, since the activity was recovered by adding the ROS scavenger, tiron. Proteasome inhibition seemed to elicit an increase in HSP70 levels. Furthermore, retention of mitochondrial cytochrome c and inhibition of caspase 3 activity were observed by X/XO incubation in presence or absence of ADR. In conclusion, in spite of all the insults inflicted to the cardiomyocytes, they were capable to activate intracellular responses that enabled their survival. These mechanisms, namely the pathways altered by catecholamine proteasome inhibition, should be further characterized, as they could be of relevance in the ischemia preconditioning and the reperfusion injury.
- Chiral enantioresolution of cathinone derivatives present in “legal highs”, and enantioselectivity evaluation on cytotoxicity of 3,4-methylenedioxypyrovalerone (MDPV)Publication . Silva, Bárbara; Fernandes, Carla; Tiritan, Maria Elizabeth; Pinto, Madalena M.M.; Valente, Maria João; Carvalho, Márcia; Guedes de Pinho, Paula; Remião, FernandoRecently, great interest has been focused on synthetic cathinones since their consumption has increased exponentially. All synthetic cathinones exist as chiral molecules; the biological and/or toxicological properties of cathinones generally differ according to the enantiomers in human body. In this study, a chiral liquid chromatography method was developed to separate and determine the enantiomeric ratio of synthetic cathinones present in "legal highs" acquired in old smart shops or over the Internet. All the synthetic cathinones were efficiently enantio-separated with α and Rs ranging from 1.24 to 3.62 and from 1.24 to 10.52, respectively, using polysaccharide-based chiral stationary phases. All synthetic cathinones, with the exception of 4-methylethcathinone (4-MEC), were present in the commercialized "legal highs" in an enantiomeric proportion of 50:50. One of the studied chiral compounds was 3,4-methylenedioxypyrovalerone (MDPV), one of the most consumed cathinone derivative worldwide. Our research group has recently reported its hepatotoxicity in the racemic form. Thus, the analytical enantioresolution of the MDPV was scaled up to multi-milligram using a semi-preparative amylose tris-3,5-dimethylphenylcarbamate column (20 cm × 7.0 mm ID, 7 µm particle size). Both enantiomers were isolated with high enantiomeric purity (enantiomeric excess > 99 %). The toxicity of S-(-)-MDPV and R-(+)-MDPV was evaluated, for the first time, using primary cultures of rat hepatocytes. It was also possible to verify that MDPV enantiomers showed hepatotoxicity in a concentration-dependent manner, but displayed no enantioselective toxicity in this cell culture model.
- Cross-functioning between the extraneuronal monoamine transporter and multidrug resistance protein 1 in the uptake of adrenaline and export of 5-(glutathion-S-yl) adrenaline in rat cardiomyocytesPublication . Costa, Vera Marisa; Ferreira, Luísa Maria; Branco, Paula Sério; Carvalho, Félix; Bastos, Maria de Lourdes; Carvalho, Rui Albuquerque; Carvalho, Márcia; Remião, FernandoIsolated heart cells are highly susceptible to the toxicity of catecholamine oxidation products, namely, to catecholamine-glutathione adducts. Although cellular uptake and/or efflux of these products may constitute a crucial step, the knowledge about the involvement of transporters is still very scarce. This work aimed to contribute to the characterization of membrane transport mechanisms, namely, extraneuronal monoamine transporter (EMT), the multidrug resistant protein 1 (MRP1), and P-glycoprotein (P-gp) in freshly isolated cardiomyocytes from adult rats. These transporters may be accountable for uptake and/or efflux of adrenaline and an adrenaline oxidation product, 5-(glutathion-S-yl)adrenaline, in cardiomyocyte suspensions. Our results showed that 5-(glutathion-S-yl)adrenaline efflux was mediated by MRP1. Additionally, we demonstrated that the adduct formation occurs within the cardiomyocytes, since EMT inhibition reduced the intracellular adduct levels. The classical uptake2 transport in rat myocardial cells was inhibited by the typical EMT inhibitor, corticosterone, and surprisingly was also inhibited by low concentrations of another drug, a well-known P-gp inhibitor, GF120918. The P-gp activity was absent in the cells since P-gp-mediated efflux of quinidine was not blocked by GF120918. In conclusion, this work showed that freshly isolated cardiomyocytes from adult rats constitute a good model for the study of catecholamines and catecholamines metabolites membrane transport. The cardiomyocytes maintain EMT and MRP1 fully active, and these transporters contribute to the formation and efflux of 5-(glutathion-S-yl)adrenaline. In the present experimental conditions, P-gp activity is absent in the isolated cardiomyocytes.
- Cu2+-induced isoproterenol oxidation into isoprenochrome in adult rat calcium-tolerant cardiomyocytesPublication . Remião, Fernando; Carvalho, Márcia; Carmo, Helena; Carvalho, Félix; Bastos, Maria L.Sustained high levels of circulating catecholamines may induce cardiotoxicity. There is increasing evidence that this could result from catecholamine oxidation into aminochromes, which is catalyzed by transition metals. In fact, it has already been shown that copper-induced oxidation of the beta-agonist isoproterenol decreases the viability of isolated cardiomyocytes. Thus, the aim of this work was to contribute for the clarification of the mechanisms underlying the toxic effects of isoproterenol, Cu2+ and their concomitant effect in isolated rat cardiomyocytes. Freshly isolated calcium-tolerant cardiomyocytes from adult rat were incubated with 1 mM isoproterenol, 20 microM Cu2+ or with both during 4 h. Isoproterenol and its aminochrome (isoprenochrome), and reduced and oxidized glutathione were measured at each hour in the incubation medium and in the cells. The intracellular activities of the selenium-dependent glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were determined after 4 h of incubation. Isoprenochrome was found in both cells and incubation medium in samples incubated with isoproterenol alone. However, in the isoproterenol plus Cu2+ samples, a greater depletion of isoproterenol accompanied by a proportional increase of isoprenochrome was observed. This higher ISO oxidation resulted in the depletion of intracellular glutathione and in the release of oxidized glutathione to the incubation medium. The content of total glutathione (intra- and extracellular) and the intracellular activity of the selenium-dependent glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were also decreased in the isoproterenol plus Cu2+ samples. These results seem to indicate that the oxidative stress resulting from catecholamine/transition metal association may contribute to catecholamine cardiotoxicity.
- Effect of 3,4-methylenedioxymethamphetamine ("ecstasy") on body temperature and liver antioxidant status in mice: influence of ambient temperaturePublication . Carvalho, Márcia; Carvalho, Félix; Remião, Fernando; Pereira, Maria de Lourdes; Pires-das-Neves, Ricardo; Bastos, Maria de LourdesThe consumption of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is known to cause severe hyperthermia and liver damage in humans. The thermogenic response induced by MDMA is complex and partially determined by the prevailing ambient temperature (AT). This is of extreme importance since ecstasy is often consumed at "rave" parties, where dancing takes place in a warm environment, which may exacerbate the effect of MDMA on thermoregulation. In view of the fact that hyperthermia is a well-known pro-oxidant aggressive condition, its potential role in ecstasy-induced hepatocellular toxicity should be further studied. Thus, the present study was performed in order to evaluate the influence of AT on the effects of single administration of MDMA on body temperature and liver toxicity in Charles River mice. Animals were given an acute intraperitoneal dose of MDMA (5, 10 or 20 mg/kg) and placed in AT of 20+/-2 degrees C or 30+/-2 degrees C for 24 h. Body temperature was measured during the study using implanted transponders and a temperature probe reading device. Plasma and liver samples were used for biochemical analysis. Liver sections were also taken for histological examination. The parameters evaluated were (1) plasma levels of transaminases and alkaline phosphatase, (2) hepatic glutathione (GSH), (3) hepatic lipid peroxidation, (4) activity of hepatic antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, glutathione- S-transferase, copper/zinc superoxide dismutase and manganese superoxide dismutase), and (5) liver histology. The hyperthermic response elicited by MDMA was clearly dose-related and potentiated by high AT. Administration of MDMA produced some evidence of oxidative stress, expressed as GSH depletion at both ATs studied, as well as by lipid peroxidation and decreased catalase activity at high AT. High AT, by itself, decreased glutathione peroxidase activity. Histological examination of the liver revealed abnormalities of a dose- and AT-dependent nature. These changes included vacuolation of the hepatocytes, presence of blood clots and loss of typical hepatic cord organisation. The results obtained in the present study suggest that oxidative stress plays a part in the first stage of MDMA-induced liver damage and that liver antioxidant status is aggravated by increased AT. Thus, these findings are in accordance with the hypothesis that high AT may potentiate ecstasy-induced hepatotoxicity by increasing body hyperthermia.
- Electrochemical characterization of imidazole-based carboxamidrazones in aqueous and organic solutions and structure-activity relationshipPublication . Rodrigues, Rui; Dantas, Daniela; Carvalho, Filipe; Ribeiro, Ana; Zille, Andrea; Silva, Renata; Remião, Fernando; Dias, Alice; Pinto, Eugénia; Cerqueira, Fátima; Geraldo, Dulce
- Ethanol, the forgotten artifact in cell culturePublication . Pontes, Helena; Carvalho, Márcia; Guedes de Pinho, Paula; Carmo, Helena; Remião, Fernando; Carvalho, Félix; Bastos, Maria de Lourdes
- Evaluation of GSH adducts of adrenaline in biological samplesPublication . Silva, Renata; Boldt, Sílvia; Costa, Vera Marisa; Carmo, Helena; Carvalho, Márcia; Carvalho, Félix; Bastos, Maria de Lourdes; Lemos-Amado, Francisco; Remião, FernandoThe sustained high release of catecholamines to circulation is a deleterious condition that may induce toxicity, which seems to be partially related to the products formed by oxidation of catecholamines that can be further conjugated with glutathione (GSH). The aim of the present study was to develop a method for the determination of GSH adducts of adrenaline in biological samples. Two position isomers of the glutathion-S-yl-adrenaline were synthesized and characterized by HPLC using diode array, coulometric and mass detectors. A method for the extraction of these adducts from human plasma was also developed, based on adsorption to activated alumina, which showed adequate recoveries and proved to be crucial in removing interferences from plasma. The selectivity, precision and linearity of the method were all within the accepted values for these parameters. Furthermore, the sensitivity of this method allows the detection of adduct amounts that are within the range of the expected concentrations for these adducts under certain pathophysiological conditions and/or drug treatments. In conclusion, the development of this method allows the direct analysis of GSH adducts of adrenaline in human plasma, providing a valuable tool for the study of the catecholamine oxidation process and its related toxicity.