Browsing by Author "Carmo, Helena"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Cu2+-induced isoproterenol oxidation into isoprenochrome in adult rat calcium-tolerant cardiomyocytesPublication . Remião, Fernando; Carvalho, Márcia; Carmo, Helena; Carvalho, Félix; Bastos, Maria L.Sustained high levels of circulating catecholamines may induce cardiotoxicity. There is increasing evidence that this could result from catecholamine oxidation into aminochromes, which is catalyzed by transition metals. In fact, it has already been shown that copper-induced oxidation of the beta-agonist isoproterenol decreases the viability of isolated cardiomyocytes. Thus, the aim of this work was to contribute for the clarification of the mechanisms underlying the toxic effects of isoproterenol, Cu2+ and their concomitant effect in isolated rat cardiomyocytes. Freshly isolated calcium-tolerant cardiomyocytes from adult rat were incubated with 1 mM isoproterenol, 20 microM Cu2+ or with both during 4 h. Isoproterenol and its aminochrome (isoprenochrome), and reduced and oxidized glutathione were measured at each hour in the incubation medium and in the cells. The intracellular activities of the selenium-dependent glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were determined after 4 h of incubation. Isoprenochrome was found in both cells and incubation medium in samples incubated with isoproterenol alone. However, in the isoproterenol plus Cu2+ samples, a greater depletion of isoproterenol accompanied by a proportional increase of isoprenochrome was observed. This higher ISO oxidation resulted in the depletion of intracellular glutathione and in the release of oxidized glutathione to the incubation medium. The content of total glutathione (intra- and extracellular) and the intracellular activity of the selenium-dependent glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were also decreased in the isoproterenol plus Cu2+ samples. These results seem to indicate that the oxidative stress resulting from catecholamine/transition metal association may contribute to catecholamine cardiotoxicity.
- Ethanol, the forgotten artifact in cell culturePublication . Pontes, Helena; Carvalho, Márcia; Guedes de Pinho, Paula; Carmo, Helena; Remião, Fernando; Carvalho, Félix; Bastos, Maria de Lourdes
- Evaluation of GSH adducts of adrenaline in biological samplesPublication . Silva, Renata; Boldt, Sílvia; Costa, Vera Marisa; Carmo, Helena; Carvalho, Márcia; Carvalho, Félix; Bastos, Maria de Lourdes; Lemos-Amado, Francisco; Remião, FernandoThe sustained high release of catecholamines to circulation is a deleterious condition that may induce toxicity, which seems to be partially related to the products formed by oxidation of catecholamines that can be further conjugated with glutathione (GSH). The aim of the present study was to develop a method for the determination of GSH adducts of adrenaline in biological samples. Two position isomers of the glutathion-S-yl-adrenaline were synthesized and characterized by HPLC using diode array, coulometric and mass detectors. A method for the extraction of these adducts from human plasma was also developed, based on adsorption to activated alumina, which showed adequate recoveries and proved to be crucial in removing interferences from plasma. The selectivity, precision and linearity of the method were all within the accepted values for these parameters. Furthermore, the sensitivity of this method allows the detection of adduct amounts that are within the range of the expected concentrations for these adducts under certain pathophysiological conditions and/or drug treatments. In conclusion, the development of this method allows the direct analysis of GSH adducts of adrenaline in human plasma, providing a valuable tool for the study of the catecholamine oxidation process and its related toxicity.
- Toxicity of amphetamines: an updatePublication . Carvalho, Márcia; Carmo, Helena; Costa, Vera Marisa; Capela, João Paulo; Pontes, Helena; Remião, Fernando; Carvalho, Félix; Bastos, Maria de LourdesAmphetamines represent a class of psychotropic compounds, widely abused for their stimulant, euphoric, anorectic, and, in some cases, emphathogenic, entactogenic, and hallucinogenic properties. These compounds derive from the β-phenylethylamine core structure and are kinetically and dynamically characterized by easily crossing the blood-brain barrier, to resist brain biotransformation and to release monoamine neurotransmitters from nerve endings. Although amphetamines are widely acknowledged as synthetic drugs, of which amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are well-known examples, humans have used natural amphetamines for several millenniums, through the consumption of amphetamines produced in plants, namely cathinone (khat), obtained from the plant Catha edulis and ephedrine, obtained from various plants in the genus Ephedra. More recently, a wave of new amphetamines has emerged in the market, mainly constituted of cathinone derivatives, including mephedrone, methylone, methedrone, and buthylone, among others. Although intoxications by amphetamines continue to be common causes of emergency department and hospital admissions, it is frequent to find the sophism that amphetamine derivatives, namely those appearing more recently, are relatively safe. However, human intoxications by these drugs are increasingly being reported, with similar patterns compared to those previously seen with classical amphetamines. That is not surprising, considering the similar structures and mechanisms of action among the different amphetamines, conferring similar toxicokinetic and toxicological profiles to these compounds. The aim of the present review is to give an insight into the pharmacokinetics, general mechanisms of biological and toxicological actions, and the main target organs for the toxicity of amphetamines. Although there is still scarce knowledge from novel amphetamines to draw mechanistic insights, the long-studied classical amphetamines-amphetamine itself, as well as methamphetamine and MDMA, provide plenty of data that may be useful to predict toxicological outcome to improvident abusers and are for that reason the main focus of this review.