Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 4 of 4
  • Evaluation of the biocompatibility and skin hydration potential of vitamin E-loaded lipid nanosystems formulations: in vitro and human in vivo studies
    Publication . Vaz, S.; Silva, R.; Amaral, M.H.; Martins, E.; Lobo, J.M. Sousa; Silva, Ana Catarina
    Lipid-based nanosystems, such as nanostructured lipid carriers (NLC) and nanoemulsions (NE) have been described as promising alternatives to conventional formulations for increase skin hydration. Besides, these systems have been used as efficient vehicles for lipophilic molecules that improve skin properties (e.g. vitamin E). In this study, we performed comparative investigations between hydrogels formulations containing vitamin E-loaded NLC (HG-NLCVE) and vitamin E-loaded nanoemulsion (HG-NEVE). The experiments started with particle size measurements, which showed no significant differences between nanoparticles/nanodroplets sizes after incorporation in the hydrogel net (386 nm vs. 397 nm for HG-NLCVE and 402 nm vs. 514 nm for HG-NEVE). Afterwards, in vitro biocompatibility studies in human keratinocytes were carried out, being observed that the lipid-based nanosystems were more cytotoxic for the cells before incorporation in the hydrogel. Finally, the formulations hydration potential and sensory attributes for skin application were evaluated by in vitro occlusion tests and in vivo human experiments. The results showed that the HG-NLCVE exhibited the best occlusive properties, whereas the HG-NEVE performed a faster skin hydration effect. Furthermore, the latter was selected as the most attractive for skin application, although the HG-NLCVE was described as more suitable to obtain a long-lasting effect. This study demonstrated the in vitro and in vivo safety and hydration potential of hydrogels containing vitamin E-loaded lipid-based nanosystems. These results establish a basis to assess the cutaneous use of these systems, despite more in vivo experiments, for longer periods and in more volunteers, are required before commercialization.
  • Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound
    Publication . Silva, Ana Catarina; González-Mira, E.; García, M.L.; Egea, M.A.; Fonseca, J.; Silva, R.; Santos, D.; Souto, Eliana B.; Ferreira, D.
    The suitability of solid lipid nanoparticles (SLN) for the encapsulation of risperidone (RISP), an antipsychotic lipophilic drug, was assessed for oral administration. The hot high pressure homogenization (HPH) and the ultrasound (US) technique were used as production methods for SLN. All the studies on the SLN formulations were done in parallel, in order to compare the results and conclude about the advantages and limitations of both techniques. The particle sizes were in the nanometer range for all prepared SLN formulations and the zeta potential absolute values were high, predicting good long-term stability. Optical analyses demonstrated the achievement of stable colloidal dispersions. Physicochemical characterization of dispersions and bulk lipids, performed by differential scanning calorimetry (DSC) and X-ray assays, support prediction of occurrence of drug incorporation in the SLN and good long term stability of the systems. The toxicity of SLN with Caco-2 cells and the existence of contaminations derived from the production equipments were assessed by the (4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) assay. The results showed 90% of cell viability after SLN exposure, with no significant differences within all prepared formulations (p > 0.05). From this study, we conclude that SLN can be considered as efficient carriers for RISP encapsulation. Moreover, HPH and US revealed to be both effective methods for SLN production.
  • Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles
    Publication . Silva, Ana Catarina; Kumar, A.; Wild, W.; Ferreira, D.; Santos, D.; Forbes, B.
    A solid lipid nanoparticles (SLN) formulation to improve the oral delivery of risperidone (RISP), a poorly water-soluble drug, was designed and tested. Initially, lipid-RISP solubility was screened to select the best lipid for SLN preparation. Compritol(®)-based formulations were chosen and their long-term stability was assessed over two years of storage (at 25 °C and 4 °C) by means of particle size, polydispersity index (PI), zeta potential (ZP) and encapsulation efficiency (EE) measurements. SLN shape was observed by transmission electron microscopy (TEM) at the beginning and end of the study. The oxidative potential (OP) of the SLN was measured and their biocompatibility with Caco-2 cells was evaluated using the (4,5-dimethylthiazol-2-yl)2,5-dyphenyl-tetrazolium bromide (MTT) assay. In vitro drug release and transport studies were performed to predict the in vivo release profile and to evaluate the drug delivery potential of the SLN formulations, respectively. The RISP-loaded SLN systems were stable and had high EE and similar shape to the placebo formulations before and after storage. Classical Fickian diffusion was identified as the release mechanism for RISP from the SLN formulation. Biocompatibility and dose-dependent RISP transport across Caco-2 cells were observed for the prepared SLN formulations. The viability of SLN as formulations for oral delivery of poorly water-soluble drugs such as RISP was illustrated.
  • Characterization and biocompatibility evaluation of cutaneous formulations containing lipid nanoparticles
    Publication . Eiras, F.; Amaral, M.H.; Silva, R.; Martins, E.; Lobo, J.M. Sousa; Silva, Ana Catarina
    Nanostructured lipid carriers (NLC) are well-known systems that show effectiveness to improve skin hydration, being suggested for cosmetic and dermatological use. Nonetheless, NLC dispersions present low viscosity, which is non-attractive for cutaneous application. To circumvent this drawback, the dispersions can be gelled or incorporated in semisolid systems, increasing the final formulation consistency. In this study, we prepared a hydrogel based on NLC containing vitamin E (HG-NLCVE) and evaluated its suitability for cutaneous application. The experiments started with the HG-NLCVE characterization (organoleptic analysis, accelerated stability, particle size, morphology, pH, texture and rheology). Afterwards, in vitro experiments were carried out, evaluating the formulation biocompatibility (MTT and Neutral Red) and irritant potential (Hen's egg test on the chorioallantoic membrane, HET-CAM) for cutaneous application. The results showed that the HG-NLCVE has adequate features for skin application, is biocompatible and non-irritant. From this study, it was predicted the in vivo irritant potential of the developed formulation, avoiding the need to perform a high number of tests on human volunteers. Regarding vitamin E and NLC potential to improve skin hydration, we suggest that the HG-NLCVE could be used in cosmetic (e.g. moisturizers and anti-aging) or dermatologic (e.g. xerosis and other skin disorders) products.