Repository logo
 
Loading...
Thumbnail Image
Publication

Reinforcement learning based recommender systems for web applications: scenarios of radio and game aggregators

Use this identifier to reference this record.
Name:Description:Size:Format: 
DM_38069.pdf380694.97 MBAdobe PDF Download

Abstract(s)

With the progression of time and the continuous evolution of digital entertainment services such as YouTube, Netflix, Spotify, and online gaming platforms, recommendation systems have become an essential daily tool for users. These systems save users time by analyzing various content, facilitating searches, and suggesting relevant content in a personalized manner. However, the same level of personalization is not consistently found across all media domains, particularly within the radio streaming and gaming sectors. For radio streaming, users must currently search explicitly for a specific internet radio station’s name either through a search engine or a radio aggregator like myTuner. This process can lead to significant time consumption and potential loss of user interest, especially if users are unsure of the type of radio they wish to listen to. A similar challenge is faced in the gaming industry, where an overwhelming array of choices can lead to difficulty in discovery and decision-making for players. Furthermore, even within aggregators that offer some form of recommendation, a convergence is often observed where the most popular items dominate the top spots. This dynamic makes it challenging to discover lesser-known radio stations or games, resulting in a homogenized user experience. In response to these challenges, this thesis presents the design, implementation, and empirical evaluation of a recommendation system, specialized in the aforementioned domains. Utilizing machine learning and emphasizing deep reinforcement learning techniques, the system optimizes content suggestions, considering variables such as language, region, and user history, fostering personalized recommendations. The system has been deployed in two distinct production scenarios, demonstrating promising preliminary results. It exhibits consistent improvement and adaptability over time, reinforcing its practical applicability and effectiveness.
Com o progresso do tempo e a contínua evolução dos serviços digitais de entretenimento como o YouTube, a Netflix, o Spotify e plataformas de jogos online, os sistemas de recomendação tornaram-se uma ferramenta diária essencial para os utilizadores. Estes sistemas poupam tempo aos utilizadores, analisando vários conteúdos, facilitando as pesquisas e sugerindo conteúdo relevante de forma personalizada. No entanto, o mesmo nível de personalização não é consistentemente encontrado em todos os domínios de mídia, particularmente nos setores de transmissão de rádio e jogos. Para a transmissão de rádio, os utilizadores devem atualmente procurar explicitamente pelo nome de uma estação de rádio na Internet, seja através de um motor de busca ou de um agregador de rádio como o myTuner. Este processo pode levar a um consumo significativo de tempo e potencial perda de interesse do utilizador, especialmente se os utilizadores não têm a certeza do tipo de rádio que desejam ouvir. Um desafio semelhante é enfrentado na indústria de jogos, onde uma vasta gama de escolhas pode levar a dificuldades na descoberta e tomada de decisão para os jogadores. Além disso, mesmo dentro de agregadores que oferecem alguma forma de recomendação, observa-se frequentemente uma convergência onde os itens mais populares dominam os primeiros lugares. Esta dinâmica torna desafiante a descoberta de estações de rádio ou jogos menos conhecidos, resultando numa experiência de utilizador homogeneizada. Em resposta a esses desafios, esta tese apresenta o design, implementação e avaliação empírica de um sistema de recomendação, especializado nos domínios mencionados. Utilizando machine learning e enfatizando técnicas de deep reinforcement learning, o sistema otimiza sugestões de conteúdo, considerando variáveis como língua, região e histórico do utilizador, promovendo recomendações personalizadas. O sistema foi implementado em dois cenários de produção distintos, demonstrando resultados preliminares promissores. Exibe uma melhoria e adaptabilidade consistentes ao longo do tempo, reforçando sua aplicabilidade prática e eficácia.

Description

Keywords

Citation

Research Projects

Organizational Units

Journal Issue