Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Evaluation of ammonium and phosphate release from intertidal and subtidal sediments of a shallow coastal lagoon (Ria Formosa – Portugal): a modelling approachPublication . Serpa, Dalila; Falcão, Manuela; Duarte, Pedro; Cancela da Fonseca, Luís; Vale, CarlosDuring an annual cycle, overlying water and sediment cores were collected simultaneously at three sites (Tavira, Culatra and Ramalhete) of Ria Formosa’s intertidal muddy and subtidal sandy sediments to determine ammonium, nitrates plus nitrites and phosphate. Organic carbon, nitrogen and phosphorus were also determined in superficial sediments. Ammonium and phosphate dissolved in porewater were positively correlated with temperature (P < 0.01) in muddy and sandy sediments, while the nitrogen-oxidized forms had a negative correlation (P < 0.02) in muddy sediments probably because mineralization and nitrification/denitrification processes vary seasonally. Porewater ammonium profiles evidenced apeak in the top-most muddy sediment (380 lM) suggesting higher mineralization rate when oxygen is more available, while maximum phosphate concentration (113 lM) occurred in the sub-oxic layer probably due to phosphorus desorption under reduced conditions. In organically poor subtidal sandy sediments, nutrient porewater concentrations were always lower than in intertidal muddy sediments, ranging annually from 20 lMto 100 lM for ammonium and from 0.05 lM to 16 lM for phosphate. Nutrient diffusive fluxes predicted by a mathematical model were higher during summer, inbothmuddy (104 nmol cm–2d–1––NH4+; 8 nmol cm–2 d–1––HPO4–2) and sandy sediments (26 nmol cm–2 d–1––NH4+; 1 nmol cm–2 d–1––HPO4–2), while during lower temperature periods these fluxes were 3–4 times lower. Based on simulated nutrient effluxes, the estimated annual amount of ammonium and phosphate exported from intertidal areas was three times higher than that released from subtidal areas (22 ton year–1––NH4+; 2 ton year–1––HPO4–2), emphasizing the importance of tidal flats to maintain the high productivity of the lagoon. Global warming scenarios simulated with the model, revealed that an increase in lagoon water temperature only produces significant variations (P < 0.05) for NH4+ in porewater and consequent diffusive fluxes, what will probably affect the system productivity due to a N/P ratio unbalance.
- Analysis of coastal lagoon metabolism as a basis for managementPublication . Duarte, Pedro; Bernardo, João; Costa, Ana; Macedo, M.F.; Calado, Gonçalo; Cancela da Fonseca, LuísThis work was carried out in a shallow eutrophic coastal lagoon (St. André lagoon, SW Portugal) which is artificially opened to the sea each year in early spring. Macrophytes, mainly Ruppia cirrhosa, are keystone species in this ecosystem covering up to 60% of its total area with peak biomasses over 500 g DWm−2. The main objectives were to study ecosystem metabolism, to evaluate the metabolic contribution to the community of the macrophyte stands and their influence in the development of thermal stratification and bottom oxygen depletion. The work combined an experimental and a modelling methodology. The experimental approach included open water, mesocosm and microcosm seasonal experiments. During these experiments several physical, chemical and biological parameters were monitored in the lagoon and in plastic enclosures (mesocosms) for periods of 24 hours. The microcosm experiments followed the light-dark bottle technique. The simultaneous use of these different methodologies allowed the analysis of the contribution of the planktonic and benthic compartments to the ecosystem’s oxygen budget. The modelling work was based on the mathematical simulation of heat and gas exchanges in a vertically resolved water column, under different macrophyte densities. Several simulations were carried out, in order to investigate the importance of the macrophytes in the development of water column stratification and anoxia. The simulation results suggest that macrophytes may greatly influence thermocline and oxycline development. This influence is proportional to their biomass and canopy height. It is suggested that controlled macrophyte biomass removal of up to 25% of available biomass in summer, may be useful in preventing bottom anoxia without compromising benthic net primary production.