Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • A methodology for parameter estimation in seaweed productivity modelling
    Publication . Duarte, Pedro; Ferreira, João
    This paper presents a combined approach for parameter estimation in models of primary production. The focus is on gross primary production and nutrient assimilation by seaweeds. A database of productivity determinations, biomass and mortality measurements and nutrient uptake rates obtained over one year for Gelidium sesquipedale in the Atlantic Ocean off Portugal has been used. Annual productivity was estimated by harvesting methods, and empirical relationships using mortality/ wave energy and respiration rates have been derived to correct for losses and to convert the estimates to gross production. In situ determinations of productivity have been combined with data on the light climate (radiation periods, intensity, mean turbidity) to give daily and annual productivity estimates. The theoretical nutrient uptake calculated using a 'Redfield ratio' approach and determinations of in situ N and P consumption by the algae during incubation periods have also been compared. The results of the biomass difference and incubation approaches are discussed in order to assess the utility of coefficients determined in situ for parameter estimation in seaweed production models.
  • Evaluation of ammonium and phosphate release from intertidal and subtidal sediments of a shallow coastal lagoon (Ria Formosa – Portugal): a modelling approach
    Publication . Serpa, Dalila; Falcão, Manuela; Duarte, Pedro; Cancela da Fonseca, Luís; Vale, Carlos
    During an annual cycle, overlying water and sediment cores were collected simultaneously at three sites (Tavira, Culatra and Ramalhete) of Ria Formosa’s intertidal muddy and subtidal sandy sediments to determine ammonium, nitrates plus nitrites and phosphate. Organic carbon, nitrogen and phosphorus were also determined in superficial sediments. Ammonium and phosphate dissolved in porewater were positively correlated with temperature (P < 0.01) in muddy and sandy sediments, while the nitrogen-oxidized forms had a negative correlation (P < 0.02) in muddy sediments probably because mineralization and nitrification/denitrification processes vary seasonally. Porewater ammonium profiles evidenced apeak in the top-most muddy sediment (380 lM) suggesting higher mineralization rate when oxygen is more available, while maximum phosphate concentration (113 lM) occurred in the sub-oxic layer probably due to phosphorus desorption under reduced conditions. In organically poor subtidal sandy sediments, nutrient porewater concentrations were always lower than in intertidal muddy sediments, ranging annually from 20 lMto 100 lM for ammonium and from 0.05 lM to 16 lM for phosphate. Nutrient diffusive fluxes predicted by a mathematical model were higher during summer, inbothmuddy (104 nmol cm–2d–1––NH4+; 8 nmol cm–2 d–1––HPO4–2) and sandy sediments (26 nmol cm–2 d–1––NH4+; 1 nmol cm–2 d–1––HPO4–2), while during lower temperature periods these fluxes were 3–4 times lower. Based on simulated nutrient effluxes, the estimated annual amount of ammonium and phosphate exported from intertidal areas was three times higher than that released from subtidal areas (22 ton year–1––NH4+; 2 ton year–1––HPO4–2), emphasizing the importance of tidal flats to maintain the high productivity of the lagoon. Global warming scenarios simulated with the model, revealed that an increase in lagoon water temperature only produces significant variations (P < 0.05) for NH4+ in porewater and consequent diffusive fluxes, what will probably affect the system productivity due to a N/P ratio unbalance.
  • The influence of incubation periods on photosynthesis–irradiance curves
    Publication . Macedo, M.F.; Duarte, Pedro; Ferreira, João
    In phytoplankton primary production studies, samples for the determination of photosynthesis versus irradiance relationship ( P–I) are usually incubated at several irradiance levels during a fixed time period, commonly 2–4 h. However, it is not clear if the use of this fixed incubation time is appropriate to study the P–I relationship in any given ecosystem. The aim of this work was to study the influence of incubation time on the P–I relationship in natural phytoplankton populations from three different coastal ecosystems: an open coastal area, an estuary, and a coastal lagoon. Physical and chemical variables, phytoplankton biomass, species composition, and P–I curves were analysed. The results showed that, in the coastal area and in the estuary, P–I relationships were time dependent, whereas in the coastal lagoon different incubation periods produced the same P–I curve. An underestimation of daily primary production, ranging from 13% to 42.5%, was calculated when data from standard incubation times (2–4 h) were used in ecosystems where P–I curves present a dynamic time-dependent behaviour. This work suggests that the response of the P–I curves to the incubation time varies with the characteristics of the ecosystem and is related to the light regime to which phytoplankton cells are adapted. D 2002 Elsevier Science B.V. All rights reserved.
  • Analysis of coastal lagoon metabolism as a basis for management
    Publication . Duarte, Pedro; Bernardo, João; Costa, Ana; Macedo, M.F.; Calado, Gonçalo; Cancela da Fonseca, Luís
    This work was carried out in a shallow eutrophic coastal lagoon (St. André lagoon, SW Portugal) which is artificially opened to the sea each year in early spring. Macrophytes, mainly Ruppia cirrhosa, are keystone species in this ecosystem covering up to 60% of its total area with peak biomasses over 500 g DWm−2. The main objectives were to study ecosystem metabolism, to evaluate the metabolic contribution to the community of the macrophyte stands and their influence in the development of thermal stratification and bottom oxygen depletion. The work combined an experimental and a modelling methodology. The experimental approach included open water, mesocosm and microcosm seasonal experiments. During these experiments several physical, chemical and biological parameters were monitored in the lagoon and in plastic enclosures (mesocosms) for periods of 24 hours. The microcosm experiments followed the light-dark bottle technique. The simultaneous use of these different methodologies allowed the analysis of the contribution of the planktonic and benthic compartments to the ecosystem’s oxygen budget. The modelling work was based on the mathematical simulation of heat and gas exchanges in a vertically resolved water column, under different macrophyte densities. Several simulations were carried out, in order to investigate the importance of the macrophytes in the development of water column stratification and anoxia. The simulation results suggest that macrophytes may greatly influence thermocline and oxycline development. This influence is proportional to their biomass and canopy height. It is suggested that controlled macrophyte biomass removal of up to 25% of available biomass in summer, may be useful in preventing bottom anoxia without compromising benthic net primary production.
  • Modelling growth of Ruppia cirrhosa
    Publication . Calado, Gonçalo; Duarte, Pedro
    The main objectives of this work were to synthesise information on the autoecology of Ruppia cirrhosa Petagna (Grande) in a mathematical model and to use the model to simulate its growth, production and harvest. Model parameters were allowed to vary as a result of acclimation, following experimental data reported in the literature. Biomass data from Santo André lagoon (SW Portugal) were used to calibrate the model. Validation was carried out with independent data sets from Santo André lagoon and from Tancada lagoon (NE Spain). Model simulations show a reasonable agreement with observed data with a similar biomass temporal dynamics and peaks. Self-shading appears to be an important self-regulating mechanism of biomass growth and production. The results obtained predict an annual net primary production of 361 gDWm−2well within the estimates based on harvesting techniques (295–589 gDWm−2). Model results suggest that controlled harvesting of macrophyte biomass may be carried out without affecting macrophyte real net production, through the reduction of light limitation under the plant canopy. © 2000 Elsevier Science B.V. All rights reserved.