Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Evaluation of ammonium and phosphate release from intertidal and subtidal sediments of a shallow coastal lagoon (Ria Formosa – Portugal): a modelling approach
    Publication . Serpa, Dalila; Falcão, Manuela; Duarte, Pedro; Cancela da Fonseca, Luís; Vale, Carlos
    During an annual cycle, overlying water and sediment cores were collected simultaneously at three sites (Tavira, Culatra and Ramalhete) of Ria Formosa’s intertidal muddy and subtidal sandy sediments to determine ammonium, nitrates plus nitrites and phosphate. Organic carbon, nitrogen and phosphorus were also determined in superficial sediments. Ammonium and phosphate dissolved in porewater were positively correlated with temperature (P < 0.01) in muddy and sandy sediments, while the nitrogen-oxidized forms had a negative correlation (P < 0.02) in muddy sediments probably because mineralization and nitrification/denitrification processes vary seasonally. Porewater ammonium profiles evidenced apeak in the top-most muddy sediment (380 lM) suggesting higher mineralization rate when oxygen is more available, while maximum phosphate concentration (113 lM) occurred in the sub-oxic layer probably due to phosphorus desorption under reduced conditions. In organically poor subtidal sandy sediments, nutrient porewater concentrations were always lower than in intertidal muddy sediments, ranging annually from 20 lMto 100 lM for ammonium and from 0.05 lM to 16 lM for phosphate. Nutrient diffusive fluxes predicted by a mathematical model were higher during summer, inbothmuddy (104 nmol cm–2d–1––NH4+; 8 nmol cm–2 d–1––HPO4–2) and sandy sediments (26 nmol cm–2 d–1––NH4+; 1 nmol cm–2 d–1––HPO4–2), while during lower temperature periods these fluxes were 3–4 times lower. Based on simulated nutrient effluxes, the estimated annual amount of ammonium and phosphate exported from intertidal areas was three times higher than that released from subtidal areas (22 ton year–1––NH4+; 2 ton year–1––HPO4–2), emphasizing the importance of tidal flats to maintain the high productivity of the lagoon. Global warming scenarios simulated with the model, revealed that an increase in lagoon water temperature only produces significant variations (P < 0.05) for NH4+ in porewater and consequent diffusive fluxes, what will probably affect the system productivity due to a N/P ratio unbalance.
  • Modelling growth of Ruppia cirrhosa
    Publication . Calado, Gonçalo; Duarte, Pedro
    The main objectives of this work were to synthesise information on the autoecology of Ruppia cirrhosa Petagna (Grande) in a mathematical model and to use the model to simulate its growth, production and harvest. Model parameters were allowed to vary as a result of acclimation, following experimental data reported in the literature. Biomass data from Santo André lagoon (SW Portugal) were used to calibrate the model. Validation was carried out with independent data sets from Santo André lagoon and from Tancada lagoon (NE Spain). Model simulations show a reasonable agreement with observed data with a similar biomass temporal dynamics and peaks. Self-shading appears to be an important self-regulating mechanism of biomass growth and production. The results obtained predict an annual net primary production of 361 gDWm−2well within the estimates based on harvesting techniques (295–589 gDWm−2). Model results suggest that controlled harvesting of macrophyte biomass may be carried out without affecting macrophyte real net production, through the reduction of light limitation under the plant canopy. © 2000 Elsevier Science B.V. All rights reserved.