Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles
    Publication . Barros, Joana; Grenho, Liliana; Fontenente, Sílvia; Manuel, Cândida M.; Nunes, Olga C.; Melo, Luís F.; Monteiro, Fernando J.; Ferraz, Maria Pia
    Implant-associated infections are caused by surface-adhering microorganisms persisting as biofilms, resistant to host defense and antimicrobial agents. Given the limited efficacy of traditional antibiotics, novel strategies may rely on the prevention of such infections through the design of new biomaterials. In this work, two antimicrobial agents applied to nanohydroxyapatite materials-namely, chlorhexidine digluconate (CHX) and zinc oxide (ZnO) nanoparticles-were compared concerning their ability to avoid single- or dual-species biofilms of Staphylococcus aureus and Escherichia coli. The resulting biofilms were quantified by the enumeration of colony-forming units and examined by confocal microscopy using both Live/Dead staining and bacterial-specific fluorescent in situ hybridization. The sessile population arrangement was also observed by scanning electron microscopy. Both biomaterials showed to be effective in impairing bacterial adhesion and proliferation for either single- or dual-species biofilms. Furthermore, a competitive interaction was observed for dual-species biofilms wherein E. coli exhibited higher proliferative capacity than S. aureus, an inverse behavior from the one observed in single-species biofilms. Therefore, either nanoHA-CHX or nanoHA-ZnO surfaces appear as promising alternatives to antibiotics for the prevention of devices-related infections avoiding the critical risk of antibiotic-resistant strains emergence. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 491-497, 2017.
  • Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite
    Publication . Barros, J.; Grenho, Liliana; Fernandes, M.H.; Manuel, C.M.; Melo, L.F.; Nunes, O.C.; Monteiro, F.J.; Ferraz, Maria Pia
    Nanohydroxyapatite possesses exceptional biocompatibility and bioactivity regarding bone cells and tissues, justifying its use as a coating material or as a bone substitute. Unfortunately, this feature may also encourage bacterial adhesion and biofilm formation. Surface functionalization with antimicrobials is a promising strategy to reduce the likelihood of bacterial infestation and colonization on medical devices. Chlorhexidine digluconate is a common and effective antimicrobial agent used for a wide range of medical applications. The purpose of this work was the development of a nanoHA biomaterial loaded with CHX to prevent surface bacterial accumulation and, simultaneously, with good cytocompatibility, for application in the medical field. CHX (5-1500 mg/L) was loaded onto nanoHA discs and the materials were evaluated for CHX adsorption and release profile, physic-chemical features, antibacterial activity against Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis, and cytocompatibility toward L929 fibroblasts. Results showed that the adsorption of CHX on nanoHA surface occurred by electrostatic interactions between the cationic group of CHX and the phosphate group of nanoHA. The release of CHX from CHX-loaded nanoHA showed a fast initial rate followed by a slower kinetics release, due to constraints caused by dilution and diffusion-limiting processes. NanoHA.50 to nanoHA.1500 showed strong anti-sessile activity, inhibiting bacterial adhesion and the biofilm formation. CHX-nanoHA caused a dose- and time-dependent inhibitory effect on the proliferation of fibroblasts for nanoHA.100 to nanoHA.1500. Cellular behavior on nanoHA.5 and nanoHA.50 was similar to control. Therefore, CHX-loaded nanoHA surfaces appear as a promising alternative to prevention of devices-related infections.
  • Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—anin vitroandin vivostudy
    Publication . Grenho, Liliana; Salgado, C. L.; Fernandes, M. H.; Monteiro, F. J.; Ferraz, Maria Pia
    Ceramic scaffolds are widely studied in the bone tissue engineering field due to their potential in regenerative medicine. However, adhesion of microorganisms on biomaterials with subsequent formation of antibiotic-resistant biofilms is a critical factor in implant-related infections. Therefore, new strategies are needed to address this problem. In the present study, three-dimensional and interconnected porous granules of nanostructured hydroxyapatite (nanoHA) incorporated with different amounts of zinc oxide (ZnO) nanoparticles were produced using a simple polymer sponge replication method. As in vitro experiments, granules were exposed to Staphylococcus aureus and Staphylococcus epidermidis and, after 24 h, the planktonic and sessile populations were assessed. Cytocompatibility towards osteoblast-like cells (MG63 cell line) was also evaluated for a period of 1 and 3 days, through resazurin assay and imaging flow cytometry analysis. As in vivo experiments, nanoHA porous granules with and without ZnO nanoparticles were implanted into the subcutaneous tissue in rats and their inflammatory response after 3, 7 and 30 days was examined, as well as their antibacterial activity after 1 and 3 days of S. aureus inoculation. The developed composites proved to be especially effective at reducing bacterial activity in vitro and in vivo for a weight percentage of 2% ZnO, with a low cell growth inhibition in vitro and no differences in the connective tissue growth and inflammatory response in vivo. Altogether, these results suggest that nanoHA-ZnO porous granules have a great potential to be used in orthopaedic and dental applications as a template for bone regeneration and, simultaneously, to restrain biomaterial-associated infections.