FCT (DCEA) - Teses de Doutoramento
Permanent URI for this collection
Browse
Browsing FCT (DCEA) - Teses de Doutoramento by Author "Almasri, Abdullah Mahmoud"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Google Play apps ERM: (energy rating model) multi-criteria evaluation model to generate tentative energy ratings for Google Play store appsPublication . Almasri, Abdullah Mahmoud; Gouveia, Luis BorgesA common issue that is shared among Android smartphones users was and still related to saving their batteries power and to avoid the need of using any recharging resources. The tremendous increase in smartphone usage is clearly accompanied by an increase in the need for more energy. This preoperational relationship between modern technology and energy generates energy-greedy apps, and therefore power-hungry end users. With many apps falling under the same category in an app store, these apps usually share similar functionality. Because developers follow different design and development schools, each app has its own energy-consumption habits. Since apps share similar features, an end-user with limited access to recharging resources would prefer an energy-friendly app rather than a popular energy-greedy app. However, app stores give no indication about the energy behaviour of the apps they offer, which causes users to randomly choose apps without understanding their energy-consumption behaviour. Furthermore, with regard to the research questions about the fact that power saving application consumes a lot of electricity, past studies clearly indicate that there is a lot of battery depletion due to several factors. This problem has become a major concern for smartphone users and manufacturers. The main contribution of our research is to design a tool that can act as an effective decision support factor for end users to have an initial indication of the energy-consumption behaviour of an application before installing it. The core idea of the “before-installation” philosophy is simplified by the contradicting concept of installing the app and then having it monitored and optimized. Since processing requires power, avoiding the consumption of some power in order to conserve a larger amount of power should be our priority. So instead, we propose a preventive strategy that requires no processing on any layer of the smartphone. To address this issue, we propose a star-rating evaluation model (SREM), an approach that generates a tentative energy rating label for each app. To that end, SREM adapts current energy-aware refactoring tools to demonstrate the level of energy consumption of an app and presents it in a star-rating schema similar to the Ecolabels used on electrical home appliances. The SREM will also inspire developers and app providers to come up with multiple energy-greedy versions of the same app in order to suit the needs of different categories of users and rate their own apps. We proposed adding SREM to Google Play store in order to generate the energy-efficiency label for each app which will act as a guide for both end users and developers without running any processes on the end-users smartphone. Our research also reviews relevant existing literature specifically those covering various energy-saving techniques and tools proposed by various authors for Android smartphones. A secondary analysis has been done by evaluating the past research papers and surveys that has been done to assess the perception of the users regarding the phone power from their battery. In addition, the research highlights an issue that the notifications regarding the power saving shown on the screen seems to exploit a lot of battery. Therefore, this study has been done to reflect the ways that could help the users to save the phone battery without using any power from the same battery in an efficient manner. The research offers an insight into new ways that could be used to more effectively conserve smartphone energy, proposing a framework that involves end users on the process.