Browsing by Author "Gabriel, Carla"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Coffee industrial waste as a natural source of bioactive compounds with antibacterial and antifungal activitiesPublication . Silva, Carla Sousa e; Gabriel, Carla; Cerqueira, Fátima; Manso, M. Conceição; Vinha, A. F.Coffee is one of the most popular and consumed beverages in the world, which leads to a high contents of solid residue known as spent coffee grounds (SCG). As is known, coffee beans contain several classes of health related chemicals, including phenolic compounds, melanoidins, diterpenes, xanthines and carotenoids which are associated with therapeutic and pharmaceutical effects, due to antimicrobial, antioxidant, anti-infectious and antitumour activities. Considering that this coffee industrial waste has no commercial value and are currently disposed as a solid waste or employed as fertilizers, we intend to highlight the use of SCG as a raw material with potential interest to the food and pharmaceutical industries. Moreover, this work seems to be valuable to promote the use of SCG as natural and an inexpensive food supplements or pharmaceutical additive. The phytochemical compounds content among the crude aqueous extracts of SCG followed this order: phenolics > flavonoids > carotenoids (mg/ g dry waste), respectively. Caffeine content found in SCG was ~ 0.82 g/100 g dry waste, 70 % lower than coffee roasting beans. Coffee ground extracts showed inhibition to S. aureus and E. coli growth for concentrations of 1.0 mg/ mL and a stronger inhibition was also observed against C. albicans, C. krusei and C. parapsilosis growth using lower concentration (0.5 mg/ mL).
- Mechanism of antifungal activity by 5-aminoimidazole-4-carbohydrazonamide derivatives against candida albicans and candida kruseiPublication . Cerqueira, Fátima; Maia, Marta; Gabriel, Carla; Medeiros, R.; Cravo, Sara; Ribeiro, Ana Isabel; Dantas, Daniela; Dias, Alice Maria; Saraiva, Lucília; Raimundo, Liliana; Pinto, EugéniaSystemic mycoses are one major cause of morbidity/mortality among immunocompromised/debilitated individuals. Studying the mechanism of action is a strategy to develop safer/potent antifungals, warning resistance emergence. The major goal of this study was to elucidate the mechanism of action of three (Z)-5-amino-N’-aryl-1-methyl-1H-imidazole-4-carbohydrazonamides (2h, 2k, 2l) that had previously demonstrated strong antifungal activity against Candida krusei and C. albicans ATCC strains. Activity was confirmed against clinical isolates, susceptible or resistant to fluconazole by broth microdilution assay. Ergosterol content (HPLC-DAD), mitochondrial dehydrogenase activity (MTT), reactive oxygen species (ROS) generation (flow cytometry), germ tube inhibition and drug interaction were evaluated. None of the compounds inhibited ergosterol synthesis. Ascorbic acid reduced the antifungal effect of compounds and significantly decreased ROS production. The metabolic viability of C. krusei was significantly reduced for values of 2MIC. Compounds 2h and 2k caused a significant increase in ROS production for MIC values while for 2l a significant increase was only observed for concentrations above MIC. ROS production seems to be involved in antifungal activity and the higher activity against C. krusei versus C. albicans may be related to their unequal sensitivity to different ROS. No synergism with fluconazole or amphotericin was observed, but the association of 2h with fluconazole might be valuable due to the significant inhibition of the dimorphic transition, a C. albicans virulence mechanism.