Vol. 1

FORMATEX
C/ Zurbarán 1, 2º - Oficina 1
06002 Badajoz
Spain
http://www.formatex.org
Email: samp@formatex.org

Printed in Spain
CONTENTS

VOL. 1

Introduction.. XVII

Chemical and physical agents

Antimicrobial activity of natural photosensitizing anthraquinones
S.C. Núñez Montoya, L.R. Comini and J.L. Cabrera... 3-13

Examining the efficacy of silver and cadexomer iodine dressings in treating wounds compromised by bacterial burden: A review of the literature
C. Miller.. 14-22

Mefloquine derivatives: synthesis, mechanisms of action, antimicrobial activities
Alexandra Dassonville-Klimpt, Alexia Jonet, Marine Pillon, Catherine Mullié and Pascal Sonnet.. 23-35

Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles
Tijana Ristić, Lidija Fras Zemljić, Monika Novak, Marjetka Kralj Kunčič, Silva Sonjak, Nina Gunde Cimerman and Simona Strnad.. 36-51

Fusogenic liposomes as new carriers to enlarge the spectrum of action of antibiotic drugs against Gram-negative bacteria
Rosario Pignatello, Daria Nicolosi and Vito Mar Nicolosi... 52-60

Antifungal free fatty acids: A Review
Carolina H. Pohl, Johan L.F. Kock and Vuyisile S. Thibane... 61-71

Quinoline scaffold as a privileged substructure in antimicrobial drugs
R. Musiol, T. Magdziarz and A. Kurczyk... 72-83

Immobilized Antimicrobial Agents: A Critical Perspective
John-Bruce D. Green, Timothy Fulghum and Mark A. Nordhaus.. 84-98

Antimicrobial polymers for textile products
A. Varesano, C. Vineis, A. Aluigi and F. Rombaldoni... 99-110
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychoactive drugs against effects of stress in infectious and non-infectious viral diseases</td>
<td>S. Novio, M.J. Núñez-Iglesias and M. Freire-Garabal</td>
<td>111-121</td>
</tr>
<tr>
<td>Polymer materials against the microorganism’s attack</td>
<td>Yu. Savelyev</td>
<td>122-134</td>
</tr>
<tr>
<td>Novel immune-pharmacological approaches for the treatment of bacterial invasive infections</td>
<td>Mónica D. Sparo and Sergio F. Sánchez Bruni</td>
<td>135-143</td>
</tr>
<tr>
<td>Antibacterial activity of materials synthesized from clay minerals</td>
<td>M. E. Parolo, L. G. Fernández, I. Zajonkovsky, M. P. Sánchez and M. Baschini</td>
<td>144-151</td>
</tr>
<tr>
<td>The use of biocides for the protection of library documents: before and now</td>
<td>T. Velikova, E. Trepova and T. Rozen</td>
<td>152-159</td>
</tr>
<tr>
<td>Structural modification of organic compounds by chemical synthesis to develop new antimicrobials</td>
<td>J.C. Espinoza-Hicks, A. Camacho-Dávila, G.V. Nevárez-Moorillón</td>
<td>169-175</td>
</tr>
<tr>
<td>Mini review: Antimicrobial strategies in the production of fresh-cut lettuce products</td>
<td>Ö. Tirpanalan, M. Zunabovic, K. J. Domag and W. Kneifel</td>
<td>176-188</td>
</tr>
<tr>
<td>Nanostructured Carriers for Photodynamic Therapy Applications in microbiology</td>
<td>João Paulo Figueiró Longo, Luis Alexandre Muehlmann and Ricardo Bentes de Azevedo.</td>
<td>189-196</td>
</tr>
<tr>
<td>Nanoparticles and their potential application as antimicrobials</td>
<td>Ravishankar Rai V and Jamuna Bai A.</td>
<td>197-209</td>
</tr>
<tr>
<td>Metal nanostructures as antibacterial agents</td>
<td>J. Díaz-Visurraga, C. Gutiérrez, C. von Plessing and A. García</td>
<td>210-218</td>
</tr>
<tr>
<td>Bionanoparticles: synthesis and antimicrobial applications</td>
<td>K. Sahayaraj and S. Rajesh</td>
<td>228-244</td>
</tr>
</tbody>
</table>
Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications
Amitava Mukherjee, Mohammed Sadiq I., Prathna T.C. and N. Chandrasekaran …………. 245-251

Phenotypic switching: an opportunity to bacteria thrive
A. M. Sousa, I. Machado and M. O. Pereira... 252-262

Research on ozone application as disinfectant and action mechanisms on wastewater microorganisms
M. N. Rojas-Valencia... 263-271

Gamma radiation against toxigenic fungi in food, medicinal and aromatic herbs
S. Aquino.. 272-281

Solar technologies for plant microbial pathogens inactivation on water
M. I. Polo-López, I. García-Fernández, P. Fernández-Ibáñez....................................... 282-290

Factors that Influence the Electric Field Effects on Fungal Cells
Maricica Stoica, Gabriela Bahrim and Geta Cărăc.. 291-302

Determination of heavy metals and other indicators in waters, soils and medicinal plants from Ave valley, in Portugal, and its correlation to urban and industrial pollution

Clinical microbiology

Antimicrobial Sutures: New Strategy in Surgical Site Infections
Chatchai Mingmalairak... 313-323

Encapsulation of a biocide in a starch- oil microemulsion lotion: antimicrobial activity and clinical safety of benzalkonium chloride
John J. Wille.. 324-330

Extended-spectrum β-lactamase-producing bacteria: an emerging clinical concern
Yong Chong.. 331-337

Treatment of respiratory tract infections with fluoroquinolones in Belgium
S. Simoens.. 338-343
Separation of human immunodeficiency virus type 1 (HIV-1) from motile sperm using a continuous density gradient and subsequent swim-up
Naoaki Kuji, Shingo Kato, Hideji Hanabusa and Yasunori Yoshimura……………………. 344-352

Viral infections in the pediatric oncology patient
Maria Moschovi, Maria Adamaki and Ioannis Kopsidas…………………………………… 353-362

Clinical significance and antimicrobial susceptibility of rapidly growing mycobacteria
L. García-Agudo and P. García-Martos……………………………………………………. 363-377

Novel Intervention Strategy against Tuberculosis: Insights from Graph Theory and Systems Biology
Veeky Baths and Utpal Roy………………………………………………………………… 378-385

Mini-Review: Biological control of bovine mastitis using bacteriophage therapy
I.H. Basdew and M.D. Laing………………………………………………………………….. 386-393

Risk assessment and new developing strategies to reduce prevalence of campylobacter spp. In broiler chicken meat
Djamel Djenane and Pedro Roncalés………………………………………………………… 394-406

Adverse drug reactions following immunization in Danish children: retrospective analysis of spontaneous reports submitted to the Danish Medicines Agency
Lise Aagaard, Erik Wind Hansen and Ebba Holme Hansen……………………………… 407-413

Antimicrobial properties of plasma rich in growth factors (PRGF-ENDORET) technology
Anitua E, Muruzabal F and Orive G……………………………………………………………. 414-421

Application of Prime-Boost as a Novel Vaccination Strategy Against Microbial Pathogens
De Gaspari…………………………………………………………………………………. 422-428

New Strategies to Control Vascular Catheter-Related Bloodstream Infection with Emphasis on Neonatal Intensive Care Unit
M. L. Ribeiro de Souza da Cunha and L. T. Pazzini…………………………………..…. 429-439

Behaviour against β-lactams in Aeromonas spp. isolated from extraintestinal infections
M. Quiroga and M. Vergara………………………………………………………………….. 440-443

Antimicrobial susceptibility of Streptococcus agalactiae isolated from pregnant women in Misiones, Argentina
M. Quiroga, E. Pegels, P. Oviedo, M. Laczeski and M. Vergara……………………………. 444-447
Importance of pre-operative skin and nail preparation of the foot and intra-operative surgical irrigation in reducing infection after surgical nail avulsion

Selective Decontamination of the Digestive Tract (SDD), a standard of care
Richard E Sarginson, Andy J Petros, Nia Taylor, Mark A Fox, Ian Weir, Luciano Silvestri, Hendrick KF van Saene and Miguel Angel de la Cal……………………………………………………………………………… 452-468

Antimicrobial implants and bone allografts: new uses for old antibiotics
Constantinos Ketonis, Noreen Hickok and Javad Parvizi……………………………………………………………………………………………… 469-482

War against mastitis: Current concepts on controlling bovine mastitis pathogens
Cristina Bogni, Liliana Odierno, Claudia Raspani, José Giraudo, Alejandro Larriestra, Elina Reinoso, Mirta Lasagno, Mirian Ferrari, Edith Ducrós, Cecilia Frigerio, Susana Bettera, Matías Pellegrino, Ignacio Frola, Silvana Dieser and Claudina Vissio…………… 483-494

Molecular techniques for detection and control of nosocomial infections caused by \textit{Acinetobacter baumannii}
E. Sevillano and L. Gallego……
Bioinformatics for the identification of antimicrobial targets in oral bacteria
Andréea Cristina Barbosa da Silva and Thaís Gaudêncio do Régo

A formulation of olive oils (oHo®) shows potent antimicrobial activities in vitro and in patients with atopic dermatitis (AD) colonized by *S. aureus*. Other clinical results in AD and atopy
V.G. Villarrubia, V. Pérez-Bañasco, J.M. Gil-Cunquero, F. Borrego-Utiel, R. Cisterna-Cáncer and S. Vidal-Asensi

Methods that discriminate immobilized from eluting mechanisms of kill
John-Bruce D. Green

Quorum quenching – an alternative antimicrobial therapeutics
Sunita Adak, Lakshmishri Upadrasta, S.P. Jeevan Kumar, Rahul Soni and Rintu Banerjee

Cytokines, key players to turn on/off the anti-*Trypanosoma cruzi* innate defense mechanisms
Eugenio A. Carrera-Silva, Susana Gea and Natalia Guíñazú

Role of exogenous chemokines as immunotherapeutic tool against visceral leishmaniasis.
G. Gupta, R. Dey, S. Bhattacharyya and S. Majumdar

Phagocyte and extra-phagocyte myeloperoxidase-mediated microbicidal action
Robert C. Allen and Jackson T. Stephens, Jr.

New platforms for the diagnosis and identification of fungal and bacterial pathogens
G. Gelsomino, R. Faedda, C. Rizza, G. Petrone and S.O. Cacciola

Antimicrobials: old tools, new approaches
Melo, Geraldo Batista de and Moreira, Michel Rodrigues

Use of the xenobiotic extrusion pump, MexAB-OprM, of *Pseudomonas aeruginosa* as a reporter to construct a high throughput screening system for the development of novel antimicrobials
H. Yoneyama, K. Akiba, T. Ando and E. Isogai

Strategies for Vaccination and Control of Apicomplexan Protozoan Parasites
Michael Wallach

Advance photodynamic inactivation of dental pathogenic microorganisms with water-soluble and cationic phthalocyanines
Vanya Mantareva, Veselin Kusovski, Ivan Angelov and Slavcho Dimitrov

©FORMATEX 2011

Science against microbial pathogens: communicating current research and technological advances
A. Méndez-Vilas (Ed.)
Effectiveness of photodynamic therapy on Gram-negative bacteria
Wanessa C. M. A. Melo, Lucas F. Castro, Roberta M. M. T. S. Dal’Mas and Janice R. Perussi
662-667

Science against microbial pathogens: photodynamic therapy approaches
Constance L.L. Saw
668-674

An Introduction to Photoantimicrobials: Photodynamic Therapy as a Novel Method of Microbial Pathogen Eradication
Tyler G. St. Denis and Michael R. Hamblin
675-683

New techniques in antimicrobial photodynamic therapy: scope of application and overcoming drug resistance in nosocomial infections
Faina Nakonechny, Marina Nisnevitch, Yeshayahu Nitzan and Michael A. Firer
684-691

VOL. 2

Introduction
XVII

Antimicrobial Resistance

Bacterial iron uptake: a promising solution against multidrug resistant bacteria
S. Fardeau, C. Mullié, A. Dassonville-Klimpt, N. Audic, A. Sasaki and P. Sonnet
695-705

Possibility of novel therapeutic strategy for multidrug resistant Pseudomonas aeruginosa using bactericidal activity in Streptococcus sanguinis secretion
Masachika Senba and Kiwao Watanabe
706-713

Antimicrobial resistance in Staphylococcus spp.
M. L. Ribeiro de Souza da Cunha and D. R. Ustulin
714-721

Mini Review: Novel antimicrobial compounds in the age of increasing bacterial resistance
W.O. Chung, J.C. Watahi and D.T. Hobbs
722-727

Induction of systemic resistance to anthracnose in cucumber by natural components of Allium vegetables and shiitake mushrooms
H. Inagaki, A. Yamaguchi, K. Kato, C. Kageyama and H. Iyozumi
728-735

©FORMATEX 2011
Antimicrobial resistance in biofilms
M.G. Paraje………………………………………………………………………………… 736-744

Helicobacter pylori resistance to antibiotics
Filipa F. Vale, Mónica Roxo Rosa and Mónica Oleastro………………………………… 745-756

Altered Ergosterol biosynthetic pathway - an alternate multidrug resistance mechanism independent of drug efflux pump in human pathogenic fungi C. albicans
Tulika Prasad, Sunesh Sethumadhavan and Zeeshan Fatima……………………………… 757-768

Sensing the host niche: pH as a novel determinant of multidrug resistance
Saif Hameed………………………………………………………………………………… 769-772

Chinese medicinal herbs against antibiotic-resistant bacterial pathogens
Ben Chung-Lap Chan, Clara Bik-San Lau, Claude Jolivalt, Sau-Lai Lui, Carine Ganem-Elbaz, Jean-Marc Paris, Marc Litaudon, Kwok-Pui Fung, Ping-Chung Leung and Margaret Ip………………………………………………………………………………… 773-781

Treatment of methicillin-resistant Staphylococcus aureus otorhea
Chul Ho Jang, Yong Bum Cho, Cheol Hee Choi and Hun Cho…………………………… 782-785

Antibiotic resistance traits of facultative Enterobacter cloacae strain studied with the PMEU (Portable Microbe Enrichment Unit)
Elias Hakalehto………………………………………………………………………………… 786-796

Biofilms

SOS-inducible biofilms
Tao Weitao………………………………………………………………………………… 799-812

Opportunistic pathogens and their biofilm “Food for thought”
Amro A. Amara……………………………………………………………………………… 813-825

Antimicrobial resistance to disinfectants in biofilms
P.Araújo, M.Lemos, F.Mergulhão, L. Melo and M.Simões……………………………… 826-834

Catheters: a suitable surface for biofilm formation
J. Treter and A. J. Macedo………………………………………………………………… 835-842

Strategies to control Staphylococcus epidermidis biofilms
F. Gomes, B. Leite, P. Teixeira and R. Oliveira…………………………………………… 843-852
Bacteriocin activity and resistance in livestock pathogens
H. C. Mantovani, A. M. O. Cruz and A. D. Paiva ... 853-863

A rapid, high-throughput method for culturing, characterizing and biocide efficacy
testing of both planktonic cells and biofilms
N.D. Allan, A. Omar, M.W. Harding and M.E. Olson .. 864-871

A multi-well plate method for rapid growth, characterization and biocide sensitivity
testing of microbial biofilms on various surface materials
M.W. Harding, R.J. Howard, G.D. Daniels, S.L. Mobbs, S.L.I. Lisowski, N.D. Allan,
A. Omar and M.E. Olson .. 872-877

Nanotechnology applied to medical biofilms control
C. Sousa, C. Botelho and R. Oliveira ... 878-888

In-situ study of early stages of biofilm formation under different environmental
stresses by ATR-FTIR spectroscopy
F. Humbert and F. Quilès .. 889-895

Biofilm formation, control and novel strategies for eradication
Maria Esperanza Cortés, Jessika Consuegra Bonilla and Ruben Dario Sinisterra 896-905

Mechanisms and experimental models for the assessment of microbial biofilms’
phenotypical resistance /tolerance
V. Lazar and M.C. Chifiriuc .. 906-911

Antimicrobial Peptides

LL37, a human antimicrobial peptide with immunomodulatory properties
Reinaldo Ramos, Lucília Domingues and Miguel Gama .. 915-925

Antibacterial Peptides: A Review
Christine Cézard, Viviane Silva-Pires, Catherine Mullié and Pascal Sonnet 926-937

Antimicrobial peptides modulate bilayer barrier properties using a variety of
mechanisms of actions
Md. Ashrafuzzaman .. 938-950

Structural and functional insights into plant bactericidal peptides
Novel strategy for designing antimicrobial peptides: an answer to the development of drug resistance.
N. B. Iannucci, R. González, O. Cascone and F. Albericio................................. 961-967

Isolation of a New Antimicrobial/Antitumor Plant Peptide: Biotechnology Prospects for its Use in Cancer and Infectious Diseases Therapies
María G. Guevara, Fernando F. Muñoz, María B. Fernández, Julieta R. Mendieta and Gustavo R. Daleo... 968-976

Gram-positive antibiotic biosynthetic clusters: a review
A. Argüelles Arias, M. Craig and P. Fickers.. 977-986

Antimicrobial Peptides of Probiotic Lactobacillus strains
S. Pithva, P. Ambalam, J. M. Dave and B.R.M. Vyas.. 987-991

Production of eukaryotic antimicrobial peptides by bacteria – A review
Rogier A Gaiser, Luis Rivas and Paloma López.. 992-1002

A preliminary study on antimicrobial peptides in the naturally damaged tunic of Ciona intestinalis (Tunicata)
M. A. Di Bella, H. Fedders, M. Leippe and G. De Leo... 1003-1007

Natural products and biocontrol

Antimicrobial natural products
Kenneth G. Ngwoke, Damian C. Odimegwu and Charles O. Esimone.................... 1011-1026

The potential anticariogenic effect of coffee

Control of plant diseases using extracts from medicinal plants and fungi
J. R. Stangarlin, O. J. Kuhn, L. Assi and K. R. F. Schwan-Estrada.......................... 1033-1042

Pathogenesis Related (PR) Proteins in Plant Defense Mechanism
Saboki Ebrahim, K. Usha and Bhupinder Singh... 1043-1054

Antifungal plant extracts
Marcel Pârvu and Alina E. Pârvu... 1055-1062

Homeopathy for the control of plant pathogens
M. V. Toledo, J. R. Stangarlin and C. M. Bonato.. 1063-1067
Structural and genetic alterations of fungal cells caused by mexican propolis
ML. Quintero Mora, A. Londoño Orozco, CI. Soto Zárate, CG. García Tovar, L. Carrillo
Miranda, JG. Penieres Carrillo and TA. Cruz Sánchez………………………………………………...………… 1068-1073

Small cysteine-rich proteins from plants: a rich resource of antimicrobial agents
Mrinal Bhave and Dinesh Raj Methuku………………………………………………………………… 1074-1083

Plant antimicrobials in food applications: Minireview
Yasmina Sultanbawa……………………………………………………………………………………… 1084-1093

Olive leaf extract and usage for development of antimicrobial food packaging
Z.Ö. Erdohan and K.N. Turhan……………………………………………………………………………… 1094-1101

Antimicrobial compounds produced by Bacillus spp. and applications in food
F. Baruzzi, L. Quintieri, M. Morea and L. Caputo………………………………………………………… 1102-1111

Use of natural antimicrobials for the control of Listeria monocytogenes in foods
C. A. Campos, M.P. Castro, M.F. Gliemmo and L.I. Schelegueda…………………………………… 1112-1123

Antimicrobial volatile essential oils in edible films for food safety
Wen-Xian Du, Roberto J. Avena-Bustillos, Sui Sheng T. Hua and Tara H. McHugh………………… 1124-1134

Essential oils against yeast and moulds causing food spoilage
Judit Krisch, Tserennadmid Rentsenkhand and Csaba Vágvölgyi…………………………………… 1135-1142

The mode of antibacterial action of essential oils
M. L. Faleiro…………………………………………………………………………………………………… 1143-1156

Shelf life prolongation of fruit juices through essential oils and homogenization: a review
A. Bevilacqua, M.R. Corbo, D. Campaniello, D. D'Amato, M. Gallo, B. Speranza and
M. Sinigaglia………………………………………………………………………………………………… 1157-1166

Antidermatophytic activity of essential oils
M. Zuzarte, M. J. Gonçalves, J. Canhoto and L. Salgueiro……………………………………………… 1167-1178

Antimicrobial activity of plant natural extracts and essential oils
M.A. Calvo, E.L. Arosemena, C. Shiva and C. Adelantado……………………………………………… 1179-1185

Effects of selected plants on the survival of Staphylococcus aureus
I. Steinka and A. Kukulowicz………………………………………………………………………………… 1186-1194

Plant derived antifungals- trends and potential applications in veterinary medicine:
A mini-review
Nopamart Trakranrungsie…………………………………………………………………………………… 1195-1204

Antimicrobial potentials of Allium roseum: Recent Advances and Trends
Najjaa Hanen, Sami Fattouch, Emna Ammar and Mohamed Neffati………………………………… 1205-1210

©FORMATEX 2011
Evaluation of in vitro and in vivo antibacterial and antifungal activity of “camelyn m”
Benedikte Maglakelidze, Guguli Abashidze, Inga Dadeshidze, Vakxtang Mshvildadze, Andre Pichete, Vincent Perreten, Shota Tsanava, Nata Shubladze and Koba Gurielidze.... 1211-1215

GM flax as a source of effective antimicrobial compounds
M. Czemplik, M. Zuk, A. Kulma, S. Kuc and J. Szopa.. 1216-1224

Antimicrobial properties of resveratrol: a review
L. Paulo, M. Oleastro, Eugenia Gallardo, J. A. Queiroz and F. Domingues……………… 1225-1235

Extending the benefits of antifungal proteins from plants
David W.M. Leung and Hossein Alizadeh.. 1236-1243

Molecular defence responses of sugarcane (Saccharum officinarum L.) to smut (Sporisorium scitamineum (Syd.) Piepenbr & Oberw. 2002.

Indian nutraceutical plant leaves as a potential source of natural antimicrobial agents
Sumitra Chanda and Mital Kaneria.. 1251-1259

Endophytic fungi from brazilian mangrove plant Laguncularia racemosa (L.) Gaertn. (Combretaceae): their antimicrobial potential
M.R.O. Silva, A.C. Almeida, F.V.F. Arruda and N. Gusmão.. 1260-1266

Antimicrobial activity of aqueous and methanolic extracts from Arthrospira maxima

Antimicrobial activities of microalgae: an invited review
Helena M. Amaro, A. Catarina Guedes and F. Xavier Malcata………………………... 1272-1284

Marine microorganisms: the world also changes
Pilar González-Párraga, Alberto Cuesta, J. Meseguer and Mª Ángeles Esteban............... 1285-1292

Marine Compounds and their Antimicrobial Activities
M. J. Abad, L. M. Bedoya and P. Bermejo... 1293-1306

Influence of temperature on the production of antibiotic molecules in Bacillus amyloliquefaciens strain HNA3

Bacteriocin producing lactic acid bacteria isolated from Boza, a traditional fermented beverage from Balkan Peninsula – from isolation to application
Jean Guy LeBlanc and Svetoslav Dimitrov Todorov... 1311-1320
Growth Inhibition Strategies Based on Antimicrobial Microbes/Toxins
Shanow Uthman, Eyemen Kheir, Christian Bär, Daniel Jablonowski and
Raffael Schaffrath

Enterocins: Bacteriocins with applications in the food industry
Y.M. Alvarez-Cisneros, T.R. Sáinz Espuñes, C.Wacher, F.J. Fernandez and
E.Ponce-Alquicira

Importance of microbial antagonisms about food attribution
Zerrin Erginkaya, Emel Ünal and Selin Kalkan

©FORMATEX 2011
Determination of heavy metals and other indicators in waters, soils and medicinal plants from Ave valley, in Portugal, and its correlation to urban and industrial pollution.

Pinto D, Fernandes A, Fernandes R, Mendes I, Pereira S, Vinha A, Herdeiro T, Santos E, Machado M.
Centro de Investigação em Tecnologias da Saúde – CICS. IPSN-CESPU. 4760 Vila Nova de Famalicão, Portugal.

The aim of this study was to evaluate pollution indicators on Rio Ave and surrounding environment, namely water, soil and medicinal plants in order to identify areas where contamination could cause ecosystem degradation. Plants, soil, surface water and ground water samples were collected seasonally at five different sampling sites along the Ave valley. Conductivity, pH, ammonium, nitrite and nitrate contents were evaluated. Cadmium, copper, lead, and zinc were measured in the water, soil and plants by Atomic Absorption Spectrophotometry. Results showed an increase on conductivity in waters from the origin to the mouth of the river. Nitrite levels were also higher than expected, especially in areas of wide industrialization and agricultural practices, where fertilizers widely used. Moreover, heavy metals in plants presented higher values when compared to those found in soils revealing that increased levels of heavy metals on soils are reflected similarly in plants. Levels of the analyzed parameters were often close or above to those legally acceptable in water and soils.

Key words: pollution, heavy metals, Ave Valley, soil, water, medicinal plants.

1. Introduction

Among substances that may cause risk to human health there are nitrogen compounds at different oxidation states (ammoniac nitrogen, nitrite and nitrate) and dissolved heavy metals in river water. Water contamination by nitrogen compounds is increasing and becomes a global problem due to its large and diverse origin.[1-3] It is known that their consumption through drinking water is associated with two adverse health effects such as induction of methemoglobinemia, especially in children, and the formation of carcinogenic nitrosamines and nitrosamides. 4,5 In Portugal, the situation is getting worse because, since the 90’s, it has been increasing significantly concentrations of ammoniacal nitrogen, nitrite and nitrate in river water.[6,7] In equilibrium with the nitrogen cycle, other parameters such as pH and conductivity are also commonly altered in polluted environments. pH is an important indicator of environmental quality because it can predict serious imbalances in the nitrogen cycle, with excessive production of nitrite in rivers or estuaries with pH under 6. Conductivity measurement is a parameter positively correlated with nitrite concentration allowing the prediction of waters nitrification.[7,8,9]

Urban growth, resource extraction and landfill waste are some of the processes that may cause negative impacts on soil and groundwater.[10] Pollution represents a real threat to ecosystems and to people who live or work in surrounding areas. Contaminants can achieve significant distances due to the high potential mobility of many compounds and to the interaction soil / groundwater by percolation effects.[10] Local contamination is generally associated with mining, industry, landfills. Diffuse pollution is associated with atmospheric deposition, agricultural practices and to inadequate recycling and treatment of waste and wastewater. The introduction of contaminants in soil can result in loss of some or several soil functions and even cause groundwater contamination. The occurrence of soil contaminants can cause multiple negative consequences in food chain, public health, ecosystems and natural resources.[11]

Heavy metals are highly reactive, bioaccumulative and extremely toxic elements above threshold concentrations. Lead (Pb) is the cause of multiple endocrine effects as those associated with renal dysfunction, male fertility, etc.[12] In excess, copper (Cu) leads to neurological disorders such as depression, irritability and nervousness, and to muscular pains. Zinc (Zn) is an essential element that intervenes in the metabolism of proteins and nucleic acids. However, in excess, promotes decreases in immune function and HDL levels.

Plants have been used to detect and monitor the deposition, accumulation and distribution of heavy metals.[13] In the last decades there has been an increase in the use of leaves of higher plants as biomonitors of heavy metal pollution of soils.[14]

2. Materials and Methods

2.1 Study area

The study area is located on Ave valley, throughout Rio Ave (94 km) (Fig. 1). Samples were collected in three climatic seasons during the year: Spring, Summer and Autumn and were obtained from five sites (S1–S5), (Fig.1).
Figure 1. Study area throughout Rio Ave on Ave valley. Samples were collected in Spring, Summer and Autumn and were obtained from five sites (S1–S5).

2.2 Samples

Soil (S) samples were taken from three randomly distributed points per site at a depth around 20–30 cm. Samples from surface and ground water were collected at the same time. Surface water (SW) samples were collected on each site, with three replicas per site (Fig. 1). Samples from surface water were taken at a depth of 50 cm. Ground water (GW) samples were obtained from five deep wells randomly distributed in the area (3 replicates per well). Plant samples were collected nearby the local water and soil samples were picked up, according to seasonal availability. The criteria of plants selection was based on its spontaneous growth and potential use for medical purposes.

At the laboratory, all samples were analyzed after appropriate manipulation, to determine pH, by potentiometry, using an appliance from Hanna Instruments (Model HI8417) and conductivity using a conductivimeter by Hanna Instruments (Model HI8819N). pH and conductivity were measured following standard procedures.[15]

2.3 Spectrophotometric assays

Methods used to determine different spectrophotometric parameters (Shimadzu spectrophotometer, model UV2100) are properly standardized and described in Standard Methods of Water and Wastewater.[16]

2.3.1 Ammonium

Ammonium (NH₄⁺) values were determined by spectrophotometric measurement based on the formation of blue dye (chloramines) whose absorbance was measured at 655 nm. In this method, chloramines are formed by reaction between ammonium and salicylate and hypochlorite ions in the presence of sodium nitroprusside at pH 12.6.

2.3.2 Nitrate

Nitrate concentration in samples was spectrophotometrically evaluated at 220 nm, through reaction with sulphamic acid. Considering that organic matter may constitute an interference to the method it was necessary to use a second reading of absorbance at 275 nm [Abs = (A_{sample} - A_{standard}),220nm – 2 x A_{sample},275nm].

2.3.3 Nitrite

Nitrite determination was based on the reaction of the analyte with Zambelli reagent (sulfanilic acid in a hydrochloric acid medium and in the presence of ammonium ion and phenol, form with nitrite ions a yellow colored complex with a peak absorption at 435 nm).
2.3.4 Heavy metals/ Atomic absorption spectrophotometry

Concentration of heavy metals, namely, cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) was obtained after concentration, extraction and digestion with HNO$_3$/HClO$_4$ or HNO$_3$, followed by atomic absorption spectrophotometry (AAS) (Sensai Dual GBC Scientific Equipment).[5] The AAS incorporate an air/acetylene flame system and it was performed calibration curves with Pb, Cd, Cu and Zn standards.

Soils Samples were dried at 35-40°C and sieved with a 2mm HDPE sieve. In this paper, the obtained results concerning Cd, Cu, Pb and Zn, were based on its extraction by aqua regia.[17]

2.4 Statistics

We applied the Kolmogorov–Smirnov test to determine whether the data followed a normal distribution or not. For data with a normal distribution, analysis of variance (ANOVA) and Dunnett Post Hoc Test were applied for determination of significant differences between seasons and sites. Pearson coefficient test was applied to access the association between heavy metals levels in plants and soils. The level of significance was $p < 0.05$.

2.5 Results

Sampling of surface water, groundwater, soil and plants were accomplished according to figure 1 in 5 different sites through Ave valley along Rio Ave. Concerning to water samples, pH values did not show a trend of results according to the sampling point, but values gradually increases from spring to autumn. Conductivity shows a clear increase from the first site of sampling (33.3 S.cm$^{-1}$, S1) to the mouth of the river (1056 S.cm$^{-1}$, S5) ($p <0.001$), and from spring to autumn ($p <0.05$). Parameters related to nitrogen cycle presented maximum values in summer to nitrite (NO$_2^-$)(0.37 mg. L$^{-1}$, S5). The nitrate (NO$_3^-$) presented maximum values held in site 5 in the summer (21.3 mg. L$^{-1}$, S5). In groundwater (S2 and S3), maximum values were 15.1 mg. L$^{-1}$ and 13.7 mg. L$^{-1}$, respectively (Table 1).

<table>
<thead>
<tr>
<th>Site</th>
<th>Season</th>
<th>pH</th>
<th>Conductivity (µS.cm$^{-1}$)</th>
<th>Nitrate (mg.L$^{-1}$)</th>
<th>Nitrite (mg.L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>GW</td>
<td>S</td>
<td>SW</td>
</tr>
<tr>
<td>S1</td>
<td>Spring</td>
<td>7.11</td>
<td>6.47</td>
<td>4.99</td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>7.23</td>
<td>6.38</td>
<td>5.16</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>Outumn</td>
<td>7.29</td>
<td>7.25</td>
<td>3.87</td>
<td>39.7</td>
</tr>
<tr>
<td>S2</td>
<td>Summer</td>
<td>6.91</td>
<td>6.64</td>
<td>5.60</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>Outumn</td>
<td>7.25</td>
<td>7.22</td>
<td>4.19</td>
<td>146.3</td>
</tr>
<tr>
<td>S3</td>
<td>Spring</td>
<td>6.29</td>
<td>7.06</td>
<td>4.82</td>
<td>116.3</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>7.17</td>
<td>6.71</td>
<td>3.85</td>
<td>159.0</td>
</tr>
<tr>
<td></td>
<td>Outumn</td>
<td>7.28</td>
<td>7.29</td>
<td>4.25</td>
<td>441.3</td>
</tr>
<tr>
<td>S4</td>
<td>Summer</td>
<td>7.27</td>
<td>-</td>
<td>4.23</td>
<td>170.2</td>
</tr>
<tr>
<td></td>
<td>Outumn</td>
<td>7.45</td>
<td>-</td>
<td>3.90</td>
<td>718.9</td>
</tr>
<tr>
<td>S5</td>
<td>Spring</td>
<td>7.10</td>
<td>-</td>
<td>6.43</td>
<td>237.0</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>7.13</td>
<td>-</td>
<td>6.27</td>
<td>302.0</td>
</tr>
<tr>
<td></td>
<td>Outumn</td>
<td>7.30</td>
<td>-</td>
<td>5.30</td>
<td>1056.0</td>
</tr>
</tbody>
</table>

SW, surface water; GW, groundwater; S, soil.

The higher concentration on heavy metals was found for cadmium and lead on site 5 (3.54 ng.L$^{-1}$ and 9.53 ng.L$^{-1}$, respectively). Copper presented a maximum of 4.9 ng.L$^{-1}$ in site 4 and zinc 74.8 ng.L$^{-1}$ in site 3 (Table 2). As these metals accumulate in living organisms the use of this water must be controlled, especially if the destination is the consumption, irrigation of agricultural areas and like. Regarding to groundwater, maximum values of heavy metals, were found in site 3 (Cd-3; Cu-32, Zn-100 and Pb-18 ng.L$^{-1}$).
Soil analysis showed pH values higher during the seasons of spring and summer, while the conductivity showed a decreasing trend from spring to autumn. For instance, in site 1 the conductivity in spring was 11 S.cm\(^{-1}\), in summer 6.3 S.cm\(^{-1}\) and in autumn 4.8 S.cm\(^{-1}\) (Table 1). Nitrogen content in soil samples was evaluated by determining the concentration of nitrite (NO\(_2^-\)) and nitrate (NO\(_3^-\)). Soil sample collected in site 4 showed the maximum value of nitrite (4 mg.L\(^{-1}\)) in summer, while the maximum amount of nitrates was found in site 5, in spring (32.3 mg.L\(^{-1}\)) (Table 1). The amount of heavy metals on soils depends on pH. Generally the highest values were found in site 5, on river mouth (Cd-1.4 mg.L\(^{-1}\), Cu-69 mg.Kg\(^{-1}\), Zn-251 mg.Kg\(^{-1}\) and Pb-43 mg.Kg\(^{-1}\)).

Table 2. Cadmium, copper, lead and zinc evaluated from spring to autumn in five sampling sites (S1 to S5) of surface water, groundwater and soil.

<table>
<thead>
<tr>
<th>Site</th>
<th>Season</th>
<th>SW (mg.L(^{-1}))</th>
<th>GW (mg.L(^{-1}))</th>
<th>S (mg.L(^{-1}))</th>
<th>SW (mg.L(^{-1}))</th>
<th>GW (mg.L(^{-1}))</th>
<th>S (mg.L(^{-1}))</th>
<th>SW (mg.L(^{-1}))</th>
<th>GW (mg.L(^{-1}))</th>
<th>S (mg.L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Spring</td>
<td>3.28</td>
<td>1.12</td>
<td>1.20</td>
<td>0.00</td>
<td>0.00</td>
<td>9.03</td>
<td>0.00</td>
<td>13.0</td>
<td>105.80</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>3.50</td>
<td>2.68</td>
<td>0.99</td>
<td>0.00</td>
<td>0.00</td>
<td>13.70</td>
<td>0.00</td>
<td>66.3</td>
<td>68.98</td>
</tr>
<tr>
<td>S2</td>
<td>Summer</td>
<td>2.62</td>
<td>1.90</td>
<td>1.33</td>
<td>0.00</td>
<td>14.8</td>
<td>16.58</td>
<td>22.80</td>
<td>48.3</td>
<td>13.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.62</td>
<td>1.62</td>
<td>1.93</td>
<td>0.00</td>
<td>31.2</td>
<td>17.43</td>
<td>20.10</td>
<td>71.0</td>
<td>165.88</td>
</tr>
<tr>
<td>S3</td>
<td>Spring</td>
<td>3.06</td>
<td>2.68</td>
<td>1.11</td>
<td>1.60</td>
<td>6.70</td>
<td>11.93</td>
<td>74.80</td>
<td>57.1</td>
<td>111.08</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>3.00</td>
<td>2.74</td>
<td>0.94</td>
<td>2.20</td>
<td>31.6</td>
<td>7.03</td>
<td>25.80</td>
<td>93.4</td>
<td>110.28</td>
</tr>
<tr>
<td>Outum</td>
<td></td>
<td>2.50</td>
<td>3.12</td>
<td>1.16</td>
<td>1.40</td>
<td>18.0</td>
<td>10.53</td>
<td>9.40</td>
<td>99.9</td>
<td>103.38</td>
</tr>
<tr>
<td>S4</td>
<td>Summer</td>
<td>3.18</td>
<td>1.82</td>
<td>4.90</td>
<td>-</td>
<td>25.48</td>
<td>18.60</td>
<td>-</td>
<td>182.53</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.22</td>
<td>-</td>
<td>1.05</td>
<td>0.60</td>
<td>-</td>
<td>23.53</td>
<td>30.40</td>
<td>-</td>
<td>166.18</td>
</tr>
<tr>
<td>S5</td>
<td>Summer</td>
<td>2.70</td>
<td>-</td>
<td>1.39</td>
<td>2.80</td>
<td>-</td>
<td>68.68</td>
<td>32.80</td>
<td>-</td>
<td>251.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.52</td>
<td>-</td>
<td>1.08</td>
<td>0.60</td>
<td>-</td>
<td>54.25</td>
<td>5.20</td>
<td>-</td>
<td>227.30</td>
</tr>
<tr>
<td>Outum</td>
<td></td>
<td>3.28</td>
<td>-</td>
<td>1.05</td>
<td>-</td>
<td>-</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>0.00</td>
</tr>
</tbody>
</table>

SW, surface water; GW, groundwater; S, soil.

Table 3. pH, conductivity, ammonium and nitrate evaluated in spring, summer and autumn in five sampling sites (S1 to S5).

<table>
<thead>
<tr>
<th>Site</th>
<th>Season</th>
<th>MP (µS.cm(^{-1}))</th>
<th>DP (µS.cm(^{-1}))</th>
<th>MR (µS.cm(^{-1}))</th>
<th>MO (µS.cm(^{-1}))</th>
<th>PS (µS.cm(^{-1}))</th>
<th>PA (µS.cm(^{-1}))</th>
<th>EC (µS.cm(^{-1}))</th>
<th>pH</th>
<th>Electrical Conductivity (µS.cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Spring</td>
<td>5.8</td>
<td>5.8</td>
<td>6.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>213</td>
<td>305</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>6.2</td>
<td>6.1</td>
<td>6.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>216</td>
<td>261</td>
<td>200</td>
<td>6.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>5.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>251</td>
<td>-</td>
</tr>
<tr>
<td>S2</td>
<td>Summer</td>
<td>5.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>348</td>
<td>-</td>
</tr>
<tr>
<td>S3</td>
<td>Spring</td>
<td>6.2</td>
<td>5.4</td>
<td>5.7</td>
<td>5.9</td>
<td>-</td>
<td>-</td>
<td>233</td>
<td>293</td>
<td>406</td>
<td>293</td>
<td>450</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>5.7</td>
<td>5.9</td>
<td>5.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>152</td>
<td>268</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.6</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>361</td>
<td>-</td>
</tr>
<tr>
<td>S4</td>
<td>Summer</td>
<td>5.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>381</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>349</td>
<td>-</td>
</tr>
<tr>
<td>S5</td>
<td>Spring</td>
<td>6.3</td>
<td>5.8</td>
<td>6.1</td>
<td>5.7</td>
<td>-</td>
<td>-</td>
<td>384</td>
<td>261</td>
<td>465</td>
<td>605</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
<td>5.3</td>
<td>5.8</td>
<td>248</td>
<td>-</td>
<td>681</td>
<td>803</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>6.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>328</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table 3, pH, conductivity, ammonium and nitrate evaluated in spring, summer and autumn in five sampling sites (S1 to S5) of 7 plant species, Mentha piperita (MP), Digitalis purpurea (DP), Matricaria recutita (MR), Melissa officinalis (MO), Petroselinum Sativum (PS), Pimpinella anisum (PA), Eichhornia crassipes (EC).

<table>
<thead>
<tr>
<th>Site</th>
<th>Season</th>
<th>N(_3^-) (mg.L(^{-1}))</th>
<th>Nitrates (mg.L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Spring</td>
<td>26.6</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0</td>
<td>147</td>
</tr>
<tr>
<td>S2</td>
<td>Summer</td>
<td>4.8</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>91</td>
</tr>
<tr>
<td>S3</td>
<td>Summer</td>
<td>0.7</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>74</td>
</tr>
<tr>
<td>S4</td>
<td>Summer</td>
<td>1.4</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>S5</td>
<td>Summer</td>
<td>23.6</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>301</td>
</tr>
</tbody>
</table>

N\(_3^-\): Nitrogen content in soil samples was evaluated by determining the concentration of nitrite (NO\(_2^-\)) and nitrate (NO\(_3^-\)). The plants with the most frequent sampling through the different sites were peppermint and foxglove. Results for parameters such as pH, conductivity, nitrites and ammonium can be observed in Table 3. In general, site 5 presented higher values of conductivity, nitrogen ammonia and nitrate, whose highest expression was found in the analysis of hyacinths harvested waterfront in summer (803 S.cm\(^{-1}\), 21 mg.L\(^{-1}\) and 1945 mg.L\(^{-1}\), respectively).
Regarding heavy metals concentration in plants, results are summarized in Table 4. Generally levels are quite similar among analyzed plants with the exception of *Petroselinum Sativum* that reveal higher values of Cu, and *Mentha piperita* that showed the lower levels on Zn.

Table 4. Cadmium, copper, lead and zinc evaluated on spring, summer and autumn in five sampling sites (S1 to S5) of 7 plant species, *Mentha piperita* (MP), *Digitalis purpurea* (DP), *Matricaria recutita* (MR), *Melissa officinalis* (MO), *Petroselinum Sativum* (PS), *Pimpinella anisum* (PA).

<table>
<thead>
<tr>
<th>Site</th>
<th>Season</th>
<th>Cd (ng.L(^{-1}))</th>
<th>Cu (ng.L(^{-1}))</th>
<th>Zn (ng.L(^{-1}))</th>
<th>Pb (ng.L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MP</td>
<td>DP</td>
<td>MR</td>
<td>MO</td>
</tr>
<tr>
<td>S1</td>
<td>Spring</td>
<td>1.9</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>1.3</td>
<td>1.4</td>
<td>1.6</td>
<td>-</td>
</tr>
<tr>
<td>S2</td>
<td>Spring</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>1.2</td>
<td>1.2</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>S3</td>
<td>Spring</td>
<td>1.2</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S4</td>
<td>Spring</td>
<td>1.2</td>
<td>1.4</td>
<td>2.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S5</td>
<td>Summer</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Analyzing the association among heavy metals in plants and soils it was found a linear correlation between them, namely on peppermint (Figure 2) and foxglove (Figure 3).

The relation between metal elements in soils and in peppermint revealed a significant association to all the heavy metals evaluated (Pb, Cu p<0,001; Cd p<0,05; Zn p<0,05).

Figure 2. Relation between heavy metal levels in soils and peppermint (*Mentha piperita*). Pb, Cu p<0.001; Cd p<0.05; Zn p<0.05.

The association between metal elements in soils and in foxglove also revealed to be significant in all evaluated heavy metals (Cd p<0.01; Cu, Zn p<0.05).
It must be noted that analyzed parameters have not remained similar over time. The inconsistency of weather associated to the industrial pollution found in this region, led to values that do not exhibit a particular pattern of seasonal fluctuation.

Discussion

The level of pollution of Rio Ave is quiet evident. Considering the law which defines the conditions necessary for a drinking water, it was found that Rio Ave is far from a desired source of drinking water. In Rio Ave, there is an increase on conductivity up from site 1 to site 5, this trend is also evident throughout the seasons (p <0.05). Indeed, at the mouth of the river there is a conductivity value equal to 1056 S.cm$^{-1}$ in the autumn. This value was higher than the allowed in waters used to produce drinking water ($≈$ 1000 S.cm$^{-1}$) and much higher than allowed for the quality of water for human consumption.[18]

Nitrite levels compared to what is acceptable (0.1 mg.L$^{-1}$), are also higher than expected. In site 3 was found the highest value on this parameter (0.43 mg.L$^{-1}$) that is in accordance with the wide industrialization occurring in this area. All the groundwater analyzed, collected from private wells, showed a content of nitrates higher than the minimum values allowable for drinking water quality. That fact may also be due to agricultural practices and uncontrolled use of fertilizers.

Nitrate levels although being below the limit set for water consumption quality in (50 mg.L$^{-1}$) it showed an upward trend since site 1 to site 5, related to the increasing on industrial and domestic pollution. Among all studied heavy metals it was verified that their levels are within the required parametric values for water consumption; however, it must be empathized that despite these, their capacity to accumulate in living organisms makes them important targets of health control. Curious is the fact that groundwater showed higher levels than surface water. This may be due to leaching of metals from soil, where they are in greater quantity. Indeed, Zn and Cd levels are higher than those recommended by law.[19] This is particularly evident in site 3 and 4, areas of heavy industrialization and highways nearby. On soils, limits set for heavy metal content depends on pH of the soil, therefore, in site 5 Cu, Zn and Pb values are higher since pH is also higher. Despite those values are close to the limit allowed by law (Cd-3, Cu-100, Zn-300 mg.Kg$^{-1}$) they are higher than alert values (Cd-0,6; Cu-30-35; Zn-150 mg.Kg$^{-1}$).[20,21]

On medicinal plants there are no legislation establishing limits concerning the analyzed parameters. However, these elements are important indicators of environmental pollution being important their study. Therefore, in the most industrialized sites of sampling (site 2, 3, 4) and at the mouth of the river (S5), nitrates, ammonia nitrogen and conductivity levels are generally higher for these plants. According to WHO recommendations, regarding heavy metals concentrations, the maximum levels allowed for Cd (0.3 mg.Kg$^{-1}$) and Pb (10 mg.Kg$^{-1}$) are generally exceeded. For Cu and Zn there is no legislation advising their limits.

Results showed that some of the element concentrations (Cd, Zn) in plants were higher than those in soil, and were greater than those in the water. It was also found that heavy metals levels in soil are correlated with those parameters in plants, revealing that increased levels of heavy metals on soils are reflected similarly in plants. This shows the ability of
the studied plants to extract and bioaccumulate heavy metals. Despite the interest that this feature represents on phytoremediation as a tool in pollution control, it represents a risk for public health, once they can be ingested as food or for medicinal purposes.[22-24]

Acknowledgements The support by CITS/CESPU is gratefully acknowledged.

References