CHARACTERIZATION OF CTX-M-TYPE
EXTENDED-SPECTRUM BETA-LACTAMASES
(ESBLs) AMONG ENTEROBACTERIACEAE
FROM A PORTUGUESE HOSPITAL

Soraia Necho Amaral
Pharm. D.
Faculty of Health Sciences – UFP
16574@ufp.edu.pt

Luísa Vieira Peixe
Associate Professor with Aggregation
Faculty of Pharmacy – UP
lpeixe@ff.up.pt

Elisabete Machado
Assistant Professor
CEBIMED, Faculty of Health Sciences – UFP
emachado@ufp.edu.pt

RESUMO

Na última década tem-se assistido à disseminação de enzimas do tipo CTX-M em diversos países, determinando alterações significativas na epidemiologia das beta-lactamases de espectro alargado (BLEA). A monitorização da disseminação de Enterobacteriaceae produtoras de CTX-M em Portugal foi efectuada em isolados clínicos recentes de um hospital Português. bla_{CTX-M} e ISs associadas ao seu ambiente genético foram pesquisados por PCR. A elevada prevalência de variantes de CTX-M do grupo I confirma a mudança na distribuição dos tipos de BLEA em Portugal.

PALAVRAS-CHAVE

Beta-lactamases de espectro alargado, ESBLs, CTX-M, Enterobacteriaceae, Portugal

ABSTRACT

During the last decade CTX-M enzymes have become widespread in several countries, causing a shift in the ESBL epidemiology of specific areas. In order to monitorize the dissemination of CTX-M-producing Enterobacteriaceae in Portugal, we characterized ESBL producers recovered from a Portuguese hospital. bla_{CTX-M} and specific ISs and genes associated with bla_{CTX-M} genetic environment were searched by PCR. Detection of a high occurrence of CTX-M cluster I variants confirms a shift in ESBL distribution towards CTX-M enzymes in Portugal.

KEYWORDS

Extended-Spectrum Beta-Lactamases, ESBLs, CTX-M, Enterobacteriaceae, Portugal
1. INTRODUCTION

Beta-lactam antibiotics are first-line therapeutic option to treat infections caused by *Enterobacteriaceae*, but resistance to these compounds has been increasingly reported in the last decades (Rossolini and Mantengoli, 2008). Different mechanisms of resistance to this antibiotic family have been described and include porin alterations, Penicillin Binding Proteins (PBPs) modifications, efflux systems and/or production of enzymes capable of beta-lactams hydrolysis (beta-lactamases) (Bradford, 2001). In *Enterobacteriaceae*, production of Extended-Spectrum Beta-Lactamases (ESBLs) constitutes the most common resistance mechanism to beta-lactam antibiotics (Rossolini and Mantengoli, 2008). ESBL enzymes have hydrolytic capacities over several beta-lactams, including penicillins, monobactams and extended-spectrum cephalosporins (except cephamycins), and are inactivated by classic beta-lactamase inhibitors such as clavulanic acid (Gniadkowski, 2001). Only carbapenems (e.g. imipenem) are able to these enzymes, constituting the unique therapeutical option in the group of the beta-lactams (Gniadkowski, 2001). ESBL-producing bacteria are also frequently resistant to non-beta-lactam antibiotics, as genes encoding to these patterns are also frequently located in the same mobile genetic platform (plasmid, transposon and/or integron) carrying blaESBL genes (Cantón et al., 2008; Paterson and Bonomo, 2005). This situation makes more difficult the therapy of some infections caused by ESBL-producing organisms.

Since the first report of an ESBL-producing *Klebsiella pneumoniae* in 1983 in Germany, several nosocomial outbreaks of ESBL-producing organisms have been described worldwide (Cantón et al., 2008). Prevalence of ESBLs is high in nosocomial environments mainly because of long-term exposure to antibiotics and catheterization, among other factors (Bradford, 2001). However, spread of ESBLs has also been demonstrated in other ecological niches such as healthy humans, animals, and aquatic environments (Bradford, 2001; Carattoli, 2008; Machado et al., 2004; Machado et al., 2008; Machado et al., 2009).

Several ESBL types have been created, according to their amino acid sequences, and their hydrolytic ability over several beta-lactam antibiotics (Bradford, 2001; http://www.lahey.org/studies/webt.htm). TEM and SHV families have evolved from TEM-1, TEM-2, or SHV-1 enzymes, respectively, by stepwise mutations that affect the active site of the enzyme extending its spectrum of activity (Bradford, 2001), and have been traditionally considered the most widespread ESBLs (Bradford, 2001; Cantón et al., 2008; Gniadkowski, 2001). They are mainly found among *Enterobacteriaceae*, although recent reports describe their presence among non-*Enterobacteriaceae* species (e.g. *Pseudomonas aeruginosa*) (Bradford, 2001). Non-TEM/SHV-type ESBLs, include CTX-M, OXA, GES, IBC, VEB, PER and other variants, and until recently these enzymes were rarely reported (Bradford, 2001).

During the last decade CTX-M enzymes have become widespread in several countries, causing a shift in the ESBL epidemiology of specific areas (Cantón and Coque, 2006; Hawkey, 2008; Livermore et al., 2007; Walther-Rasmussen and Hoiby, 2004). In Europe, CTX-M enzymes are becoming the predominant ESBLs, as stated recently by Euro Surveillance (Coque et al., 2008). These enzymes were firstly designated as CefoTaXMases (CTX-M) due to their higher hydrolytic activity over cefotaxime than ceftazidime (Walther-Rasmussen and Hoiby, 2004). However, CTX-M enzymes able to efficiently hydrolyze ceftazidime have also been described (Bonnet, 2004). These enzymes are grouped in five clusters (CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9 and CTX-M-25) on the basis of their amino acid sequences (Figure 1) (Bonnet, 2004). Chromosomal beta-lactamase genes from some *Kluyvera* species (widely dis-
tributed in the environment) have been suggested as the ancestors of each CTX-M-cluster and mobilization of bla_{CTX-M} genes to other bacterial genera seems to have occurred through recombinatorial events mediated by ISCR1, IS{eq}_{Ecp1} or phage related elements (Bonnet, 2004; Lartigue et al., 2004; Oliver et al., 2001; Toleman et al., 2006). CTX-M enzymes remain mainly detected in <i>Escherichia coli</i>, <i>Klebsiella pneumoniae</i>, and <i>Salmonella enterica</i> serovar Typhimurium (Bonnet, 2004; Bradford, 2001), but they were also recently identified in <i>Vibrio cholerae</i>, <i>Acinetobacter baumannii</i> or <i>Aeromonas hydrophila</i> (Walther-Rasmussen and Hoiby, 2004).

Figure 1. Phylogenetic tree for CTX-M enzymes (adapted from Lahey Clinic) (http://www.lahey.org/studies/webt.htm)

The rapid and wide spread of CTX-M enzymes worldwide is mainly due to the frequent association of bla_{CTX-M} genes with genetic mobile elements, such as epidemic plasmids, transposons, and/or insertion sequences located upstream bla_{CTX-M} also responsible for the expression of gene (e.g. bla_{CTX-M-15}) (Cantón and Coque, 2006; Coque et al., 2008; Lartigue et al., 2004). However, CTX-M epidemiology is much more complex, involving not only horizontal gene transfer, but also the clonal dissemination of CTX-M-producing organisms (e.g. CTX-M-15-producing epidemic clones) (Cantón and Coque, 2006; Cantón et al., 2008). All of these factors contribute to the increasing dissemination of CTX-M ESBLs in nosocomial and community environments (Cantón and Coque, 2006), placing CTX-M-producing organisms as a serious clinical issue.
Overall, CTX-M-15 is achieving great dominance in Europe (Cantón and Coque, 2006; Coque et al., 2008) and in a previous survey (2003-2005) performed in tertiary care Portuguese hospitals dissemination of epidemic strains and plasmids coding for CTX-M-15 enzymes were also reported (Machado et al., 2007). Shifts in ESBL-epidemiology might impose new therapeutic and infection control approaches, justifying their periodic surveillance, and hence a continuous surveillance in a bigger scale, comprising hospitals from diverse geographic areas is imperative (Coque et al., 2008). In this way, the objectives of the present study were to characterize and analyse the diversity the CTX-M ESBLs among Enterobacteriaceae from a Portuguese hospital not previously evaluated, over a period of nine months, in order to gather useful epidemiological data that might contribute to the design of interventions to control the dissemination of CTX-M-producing organisms and/or CTX-M enzymes in our country.

2. MATERIALS AND METHODS

2.1. BACTERIAL ISOLATES

A total of sixteen Enterobacteriaceae isolates recovered at Hospital A from the Centre region of Portugal and previously identified as presumptive ESBL producers were included in the present work. The isolates were obtained from clinical samples recovered from patients at several hospital wards between May 2007 and January 2008. Species identification, preliminary susceptibility testing and presumptive detection of ESBL production were performed at the hospital using the Vitek Automatic System (bioMérieux, Marcy-l’Étoile, France).

2.2. ANTIMICROBIAL SUSCEPTIBILITY TESTING

Further antibiotic susceptibility testing was performed by the disc diffusion method following the CLSI guidelines (CLSI, 2007). Antimicrobial agents tested were the following: amoxicillin/clavulanic acid (30 µg), cefoxitin (30 µg), cefoxatime (30 µg), ceftazidime (30 µg), cefepime (30 µg), aztreonam (30 µg), imipenem (10 µg), ciprofloxacin (5 µg), nalidixic acid (30 µg), gentamicin (10 µg), amikacin (30 µg), tobramycin (10 µg), streptomycin (10 µg), spectinomycin (25 µg), netilmicin (30 µg), kanamycin (30 µg), trimethoprim (5 µg), sulfonamides (300 µg), tetracyclines (30 µg), and chloramphenicol (30 µg). Discs were purchased from OXOID (Basingstoke, England). All intermediate-susceptible isolates were considered as non-susceptible.

2.3. DETECTION OF ESBL PRODUCERS

The presence of an ESBL phenotype was confirmed by the standard double-disc synergy test (DDST), using cefoxatime, ceftazidime, cefepime, and aztreonam discs placed 25 mm apart from an amoxicillin/clavulanic acid disc (Jarlier et al., 1988; Machado et al., 2007).
2.4. MOLECULAR CHARACTERIZATION OF CTX-M ESBLS AND THEIR GENETIC ENVIRONMENT

2.4.1. POLYMERASE CHAIN REACTION (PCR) AMPLIFICATIONS

Molecular characterization of CTX-M ESBLs was performed by PCR using genomic DNA from wild type strains. Bacterial DNA was extracted by boiling a bacterial suspension in 300 µL of water during 10 minutes, followed by centrifugation. Amplification of beta-lactamase (bla) genes coding for CTX-M was achieved using primers and amplification conditions for detection of a conserved sequence of bla_{CTX-M} (Edelstein et al., 2003). Further amplification of other regions of the bla_{CTX-M} gene which allow the determination of the CTX-M enzyme cluster and/or type was carried out using another set of primers specific for genetic regions that characterize each CTX-M cluster (Pitout et al., 2004). For selected cases, pairs of primers were designed for sequencing reactions of specific bla_{CTX-M} genes (Machado et al., 2006). Presence of specific ISs and genes associated with bla_{CTX-M} genetic environment were also searched by PCR (IS_{Ecp1}, bla_{OXA}, bla_{TEM}) (Bert et al., 2002; Machado et al., 2004; Machado et al., 2007). Primers and conditions used for all amplification reactions are presented in Table 1.

Table 1. Primers sequences and PCR conditions used in this study.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5'-3')</th>
<th>Gene</th>
<th>Size (bp)</th>
<th>Amplification Conditions</th>
<th>[MgCl<sub>2</sub>]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTX-M-F'</td>
<td>TTT GCG ATG TGC AGT ACC AGT A</td>
<td>CTX-M</td>
<td>590</td>
<td>1 cycle of 10 min at 94°C, 35 cycles of 1 min at 94°C, 1 min at 51°C, 1 min at 72°C, 1 cycle of 10 min at 72°C</td>
<td>1.7</td>
<td>Edelstein et al., 2003</td>
</tr>
<tr>
<td>CTX-M-R'</td>
<td>CGA TAG CTG TGC TGC CAT A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTXM1-F3</td>
<td>GAC GAT GTC ACT GGC TGA GC</td>
<td>CTX-M Cluster I</td>
<td>499</td>
<td>1 cycle of 10 min at 94°C, 35 cycles of 1 min at 94°C, 1 min at 55°C, 1 min at 72°C, 1 cycle of 10 min at 72°C</td>
<td>1.7</td>
<td>Pitout et al., 2004</td>
</tr>
<tr>
<td>CTXM1-R2</td>
<td>AGC GGC CGA CGC TAA TAC A</td>
<td>CTX-M Cluster II</td>
<td>351</td>
<td>1 cycle of 10 min at 94°C, 35 cycles of 1 min at 94°C, 1 min at 55°C, 1 min at 72°C, 1 cycle of 10 min at 72°C</td>
<td>1.7</td>
<td>Pitout et al., 2004</td>
</tr>
<tr>
<td>TOHO1-2F</td>
<td>GCC ACC TGG TTA ACT ACA ATC C</td>
<td>CTX-M Cluster III</td>
<td>307</td>
<td>1 cycle of 10 min at 94°C, 35 cycles of 1 min at 94°C, 1 min at 55°C, 1 min at 72°C, 1 cycle of 10 min at 72°C</td>
<td>1.7</td>
<td>Pitout et al., 2004</td>
</tr>
<tr>
<td>TOHO1-1R</td>
<td>CGG TAG TAT TGC CTC TAA GCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTXMB25-F</td>
<td>GCC TTT GCC AGT TGC AGC ACC</td>
<td>CTX-M Cluster IV</td>
<td>474</td>
<td>1 cycle of 10 min at 94°C, 35 cycles of 1 min at 94°C, 1 min at 62°C, 1 min at 72°C, 1 cycle of 10 min at 72°C</td>
<td>1.7</td>
<td>Pitout et al., 2004</td>
</tr>
<tr>
<td>CTXMB25-R</td>
<td>GCT CAG TAC GAT CGA GCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTXMH914-F</td>
<td>GCT GGA GAA AAG CAG CGG AG</td>
<td>CTX-M Cluster V</td>
<td>876</td>
<td>1 cycle of 10 min at 94°C, 35 cycles of 1 min at 94°C, 1 min at 55°C, 1 min at 72°C, 1 cycle of 10 min at 72°C</td>
<td>1.7</td>
<td>Machado et al., 2004</td>
</tr>
<tr>
<td>CTXMH914-R</td>
<td>GTA AGC TGA GGC AAC GTC TG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-M 10f deg</td>
<td>AAG GTT AAA AAA TTA CTG GTT C</td>
<td>CTX-M (sequencing)</td>
<td>847</td>
<td>1 cycle of 10 min at 94°C, 35 cycles of 1 min at 94°C, 1 min at 55°C, 1 min at 72°C, 1 cycle of 10 min at 72°C</td>
<td>1.7</td>
<td>Machado et al., 2006</td>
</tr>
<tr>
<td>CTX-M 10r deg</td>
<td>TTA CAA ACC GTG GGT GAC G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEM-F</td>
<td>AGT AGT ATT CAA CAT TCG CG</td>
<td>TEM</td>
<td>847</td>
<td>1 cycle of 10 min at 94°C, 35 cycles of 1 min at 94°C, 1 min at 58°C, 1 min at 72°C, 1 cycle of 10 min at 72°C</td>
<td>1.7</td>
<td>Machado et al., 2007</td>
</tr>
<tr>
<td>TEM-R</td>
<td>CTG ACA ACC ACC AAC AGT TA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA-Group III-F</td>
<td>TTT ICT GTT GTG TTG TT</td>
<td>OXA</td>
<td>427</td>
<td>1 cycle of 10 min at 94°C, 35 cycles of 1 min at 94°C, 1 min at 54°C, 1 min at 72°C, 1 cycle of 10 min at 72°C</td>
<td>1.2</td>
<td>Bert et al., 2002</td>
</tr>
<tr>
<td>OXA-Group III-R</td>
<td>TTT CTG GTC TAT GCT TG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS<sub>Ecp1</sub>-F</td>
<td>AIC TAA CAT CAA ATG CAC G</td>
<td>IS<sub>Ecp1</sub></td>
<td>1391</td>
<td>1 cycle of 10 min at 94°C, 35 cycles of 1 min at 94°C, 1 min at 59°C, 5 min at 72°C, 1 cycle of 10 min at 72°C</td>
<td>1.5</td>
<td>Machado et al., 2004</td>
</tr>
<tr>
<td>IS<sub>Ecp1</sub>-R</td>
<td>AGA CTG CTT CTC ACA CAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4.2. VISUALIZATION OF PCR RESULTS

After amplification reactions, PCR products were analysed in 2% agarose gels, using the following electrophoresis conditions: 100 V, 35 minutes, TAE buffer 1X. SYBR SafeTM DNA Gel Stain (Invitrogen, Paisly, United Kingdom) at 0.1 µL/mL was used as a nucleic acid intercalator for detection of the amplified products under an UV light.
2.4.3. **PURIFICATION OF PCR PRODUCTS**

Selected PCR products were purified using the Wizard® SV Gel and PCR Clean-UP System (PROMEGA Corporation, USA) following the manufacturer instructions.

2.4.4. **SEQUENCING**

Sequencing reactions of purified PCR products were performed using the ABI 3700 automated sequencer (Applied Biosystems, Perkin-Elmer, Foster City, CA). Nucleotide sequences were compared to sequences in the GenBank and EMBL databases by using the BLASTN local alignment search tools. Protein sequences derived from the genes were aligned using CLUSTAWL and analysed in order to identify the CTX-M-type according to sequences published in http://www.lahey.org/studies/webt.htm.

3. **RESULTS AND DISCUSSION**

Presence of CTX-M ESBLs was observed in twelve isolates (75%, 12/16) identified as *E. coli* (n=8), *K. pneumoniae* (n=1), *P. mirabilis* (n=2), and *E. cloacae* (n=1) (Table 2). The CTX-M-producing isolates were obtained from clinical samples of patients located at the following hospital wards: Medicine I (n=5), General Urgency (n=2), Medicine II (n=2), Men Medicine (n=1), Orthopedic (n=1), and Gastroenterology (n=1). These isolates were recovered from urine (n=10), pus (post-surgery) (n=1), and exsudates (n=1). Most of the CTX-M-producing isolates exhibited non-susceptibility profiles to several non-beta-lactam antibiotics (Table 2). *E. coli* was the species most frequently found as ESBL producer (56%, 9/16), which is in accordance with reports from other authors (Cantón et al., 2008). CTX-M-producing *E. coli* showed a clear spread among different wards of the studied hospital, being more prevalent in Medicine I ward (Table 2).

Table 2. Characterization of CTX-M-producing *Enterobacteriaceae* isolates included in this study.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Species</th>
<th>Date of isolation (mo/day/yr)</th>
<th>Origin</th>
<th>Specimen</th>
<th>Ward</th>
<th>Beta-Lactamases (detected and/or sequenced bla genes)</th>
<th>ISEcp1</th>
<th>Non-β-lactam resistance phenotype a</th>
</tr>
</thead>
<tbody>
<tr>
<td>H559</td>
<td>E. coli</td>
<td>5/13/07</td>
<td>Hospital A</td>
<td>Urine</td>
<td>General Urgency</td>
<td>OXA, CTX-M cluster I</td>
<td>+</td>
<td>Tb, Cp, Na, Te, Km</td>
</tr>
<tr>
<td>H560</td>
<td>E. coli</td>
<td>6/30/07</td>
<td>Hospital A</td>
<td>Urine</td>
<td>Medicine I</td>
<td>TEM, OXA, CTX-M cluster I</td>
<td>+</td>
<td>Tb, Cp, Na, Km</td>
</tr>
<tr>
<td>H567</td>
<td>E. coli</td>
<td>5/30/07</td>
<td>Hospital A</td>
<td>Urine</td>
<td>Medicine I</td>
<td>TEM, CTX-M cluster I</td>
<td>+</td>
<td>Gm, Tb, Cp, Na, Te, Nt, Km</td>
</tr>
<tr>
<td>H580</td>
<td>E. coli</td>
<td>1/4/08</td>
<td>Hospital A</td>
<td>Urine</td>
<td>Medicine I</td>
<td>TEM-1*, OXA, CTX-M-15-variant*</td>
<td>+</td>
<td>Gm, Tb, Ak, Sm, Cp, Na, Te, Nt, Km</td>
</tr>
<tr>
<td>H588</td>
<td>E. coli</td>
<td>11/29/07</td>
<td>Hospital A</td>
<td>Urine</td>
<td>General Urgency</td>
<td>TEM, OXA, CTX-M cluster I</td>
<td>+</td>
<td>Gm, Tb, Ak, Sm, Cp, Na, Te, Nt, Km</td>
</tr>
<tr>
<td>H596</td>
<td>E. coli</td>
<td>12/29/07</td>
<td>Hospital A</td>
<td>Urine</td>
<td>Medicine I</td>
<td>OXA, CTX-M cluster I</td>
<td>+</td>
<td>Gm, Tb, Sm, Cp, Na, Te, Nt, Km</td>
</tr>
<tr>
<td>H602</td>
<td>E. coli</td>
<td>1/8/08</td>
<td>Hospital A</td>
<td>Urine</td>
<td>Orthopedic</td>
<td>TEM, CTX-M cluster III, CTX-M-1*</td>
<td>+</td>
<td>Gm, Tb, Sm, Cp, Na, Te, Nt, Km</td>
</tr>
<tr>
<td>H607</td>
<td>E. coli</td>
<td>12/19/07</td>
<td>Hospital A</td>
<td>Urine</td>
<td>Gastroenterology</td>
<td>TEM, OXA, CTX-M cluster I</td>
<td>+</td>
<td>Gm, Tb, Sm, Cp, Na, Te, Nt, Km</td>
</tr>
<tr>
<td>H565</td>
<td>K. pneumoniae</td>
<td>5/24/07</td>
<td>Hospital A</td>
<td>Urine</td>
<td>Medicine I</td>
<td>OXA, CTX-M cluster I</td>
<td>--</td>
<td>Sm, Sp, Cp, Na, Su, Te, Cm</td>
</tr>
<tr>
<td>H585</td>
<td>P. mirabilis</td>
<td>12/2/07</td>
<td>Hospital A</td>
<td>Pus (surgery)</td>
<td>Medicine II</td>
<td>OXA, CTX-M-15-variant*</td>
<td>--</td>
<td>Gm, Tb, Ak, Sm, Cp, Na, Te, Nt, Km</td>
</tr>
<tr>
<td>H627</td>
<td>P. mirabilis</td>
<td>12/29/07</td>
<td>Hospital A</td>
<td>Exsudate</td>
<td>Medicine II</td>
<td>TEM, CTX-M cluster I</td>
<td>+</td>
<td>Gm, Tb, Ak, Sm, Cp, Na, Te, Nt, Km</td>
</tr>
<tr>
<td>H605</td>
<td>E. cloacae</td>
<td>11/29/07</td>
<td>Hospital A</td>
<td>Urine</td>
<td>Medicine I</td>
<td>TEM, OXA, CTX-M cluster I</td>
<td>+</td>
<td>Gm, Tb, Ak, Sm, Cp, Na, Te, Nt, Km</td>
</tr>
</tbody>
</table>

a* Tb, tobramycin; Ak, amikacin; Sm, streptomycin; Nd, netilmicin; Km, kanamycin; Su, sulphonamides; Tp, trimethoprim, Te, tetracycline; Cp, ciprofloxacin; Na, nalidixic acid; Cm, chloramphenicol; Sp, spectinomycin; Gm, gentamicin
Among the CTX-M enzymes, CTX-M belonging to cluster I were the most frequently detected, being identified among all CTX-M-producing isolates (Table 2). CTX-M enzymes of clusters III were only found in one *E. coli* isolate also harbouring a TEM and a CTX-M enzyme of cluster I. Isolates belonging to CTX-M clusters II or IV were absent. For specific amplified *bla*_{CTX-M} genes, a detailed characterization of the nucleotide sequence was carried out. Sequencing results revealed two distinct CTX-M-types: CTX-M-1 and CTX-M-15-variants. The presence of CTX-M-15-variants was expected, since the most common CTX-M enzyme in Europe and Portugal has been CTX-M-15. *bla*_{TEM} and *bla*_{OXA} genes were commonly found in isolates also harbouring *bla*_{CTX-M} genes of cluster I (8/12 and 9/12, respectively) (Table 2). These genes have been detected in the same epidemic plasmids carrying the *bla*_{CTX-M-15} also associated to the ST131 Complex Type Clone (Coque et al., 2008). The presence of the insertion sequence IS*Ecp1* was also confirmed in all but one CTX-M producers of cluster I. The CTX-M-15 enzyme was previously found in Portugal (Machado et al., 2006; Mendonça et al., 2007), and the presence of *bla*_{TEM} and *bla*_{OXA} in these bacteria could indicate an involvement of the same epidemic plasmid associated to CTX-M-15 enzymes. Concerning CTX-M-1, this enzyme was only found in our country among *Enterobacteriaceae* recovered from poultry meat or seagulls faeces (Machado et al., 2008; Poeta et al., 2008). Further studies will be necessary to analyse the potential of horizontal transfer of CTX-M-1 and CTX-M-15 variants, and characterize the plasmid involved, in order to evaluate the presence and/or maintenance of epidemic plasmids carrying these CTX-M ESBLs in our country.

4. CONCLUSIONS

We described a high occurrence of CTX-M enzymes among ESBL-producing *Enterobacteriaceae* from a Portuguese hospital. The detection of CTX-M-15-variants- and CTX-M-1-producing organisms confirms a shift in ESBL distribution towards CTX-M enzymes, a finding previously observed in other regions of our country and in Europe (Coque et al., 2008; Machado et al., 2007). The twelve CTX-M-producing *Enterobacteriaceae* in a total of eighty *Enterobacteriaceae* that were recovered during the analysis period, can be considered a devastating threat to public health, as plasmidic and/or clonal dissemination might be present and would amplify the level of danger to the community. Further analysis will better highlight the current epidemiology of CTX-M-producing *Enterobacteriaceae* in this hospital. The present epidemiological information will be useful in the design of interventions to control the dissemination of CTX-M-producing organisms and/or CTX-Ms in this hospital and, ultimately, in our country.

5. ACKNOWLEDGEMENTS

We are very grateful to Dr. Ricardo Silva (Laboratório de Microbiologia, Faculdade de Ciências da Saúde – Universidade Fernando Pessoa) for all technical support.
REFERENCES

