Sancho Miguel Balsa Ramalho

Diabetes Mellitus
Uma Nova Abordagem na Terapêutica da Diabetes Tipo 2

Universidade Fernando Pessoa
Faculdade de Ciências da Saúde
Porto 2009
Sancho Miguel Balsa Ramalho

Diabetes Mellitus
Uma Nova Abordagem na Terapêutica da Diabetes Tipo 2

Sancho Miguel Balsa Ramalho

Trabalho apresentado à Universidade Fernando Pessoa
como parte dos requisitos para a obtenção do grau de
Licenciatura em Ciências Farmacêuticas
Sumário

A diabetes mellitus é hoje um dos maiores problemas mundiais de Saúde Pública. Estima-se que em 2025 existirão mais de 300 milhões de diabéticos em todo o mundo, número este que poderá ascender a 366 milhões até 2030.

A diabetes é definida com uma desordem metabólica de etiologia múltipla, caracterizada por uma hiperiglicemia crónica com distúrbios no metabolismo dos hidratos de carbono, lípidos e proteínas, resultantes de deficiências na secreção ou acção da insulina, ou de ambas.

Desde as suas origens até aos dias de hoje muitos dados e factos surgiram. Com a evolução científica, etiológica e tecnológica ocorrida principalmente no século passado, a descoberta da diabetes tornou-se mais abrangente, embora as verdadeiras causas que lhe dão origem ainda são um constante desafio da ciência. A mesma evolução tornou imperiosa uma modificação da classificação com base nos conhecimentos adquiridos.

Por outro lado, a necessidade de evitar as complicações tardias associadas à diabetes, nomeadamente doença cardiovascular, implica uma reavaliação dos níveis de glicemia em jejum e a qualquer hora para o seu diagnóstico, bem como, uma correspondência adequada entre os referidos valores e os encontrados após realização de uma prova de tolerância à glicose oral (P.T.G.O.).

A classificação que actualmente existe em vigor estabelece a existência de quatro tipos etiológicos de diabetes: Diabetes Tipo 1; Diabetes Tipo 2; Diabetes Mellitus Gestacional; e Outros Tipos Específicos. Para além dos tipos etiológicos existem também os chamados Estadios Clínicos.

Os critérios de diagnóstico sofreram também alterações ao longo do tempo. Os requisitos para confirmar o diagnóstico numa pessoa com sintomatologia grave e com hiperiglicemia diferem dos necessários numa pessoa assintomática com valores de glicemia apenas ligeiramente acima do valor limite para o diagnóstico.

Possivelmente a maior evolução ocorreu ao nível da terapêutica. Um plano de tratamento da diabetes pode incluir várias estratégias: consciencialização e educação do doente para a adesão à terapêutica, implementação de plano alimentar e recomendações
nutricionais, prática de exercício físico, administração de agentes antidiabéticos, insulina, e gestão das complicações associadas.

Ao nível da terapêutica da diabetes tipo 2, surgiu recentemente uma classe de agentes antidiabéticos, os inibidores da DPP-IV. A inibição desta enzima aumenta os níveis e prolonga a actividade das hormonas incretininas, nomeadamente, GLP-1 e GIP. As hormonas incretininas são hormonas produzidas no intestino e libertadas em resposta à ingestão de nutrientes orais. A sua função é a de potenciar a secreção de insulina pelas células β pancreáticas como resposta à subida dos níveis de glicemia após a ingestão de uma refeição. Esta capacidade das hormonas incretinicas potenciarem a secreção de insulina induzida pela glicose tornou-as alvos atractivos da terapêutica antidiabética.

A sitagliptina e a vildagliptina, exemplos de inibidores da DPP-IV, apresentam resultados ao nível do controlo glicémico bastante satisfatórios. Para além de conseguirem reduzir os níveis de glicose plasmática em jejum, diminuem também os valores de HbA₁C. A análise deste último parâmetro pode revelar o grau de controlo glicémico dos últimos dois a três meses.

Actualmente, em Portugal já existem produtos comercializados que englobam na sua formulação dois princípios activos. Estas associações terapêuticas apresentam mecanismos de acção complementares, permitindo um melhor controlo glicémico e uma maior adesão do doente à terapêutica.
Agradecimentos

À Prof. Doutora Carla Martins, minha orientadora de monografia, quero agradecer toda a sua disponibilidade, ajuda e simpatia que prestou desde o primeiro momento.

Aos meus pais, por tudo o que me têm dado na vida.

À minha irmã, sempre presente, para me apoiar e incentivar, agora como sempre.

À minha família.

Aos amigos e colegas que partilharam todo o meu percurso ao longo desta licenciatura.
Índice

I. Introdução .. 15
II. História .. 17
III. Diabetes Mellitus .. 22
 III.1. O que é a Diabetes Mellitus? ... 22
 III.2. Classificação .. 23
 III.2.i. Diabetes Tipo 1 ... 24
 III.2.ii. Diabetes Tipo 2 ... 25
 III.2.iii. Diabetes Mellitus Gestacional ... 26
 III.2.iv. Outros Tipos Específicos .. 26
 III.2.v. Estágios Clínicos .. 27
 III.3. Complicações Resultantes da Diabetes ... 28
 III.4. Diagnóstico .. 29
IV. Terapêutica ... 33
 IV.1. Terapêutica Não Farmacológica ... 34
 IV.1.i. Alimentação .. 34
 IV.1.ii. Exercício Físico .. 35
 IV.2. Terapêutica Farmacológica .. 36
 IV.2.i. Tratamento Farmacológico Oral da Hiperglicemia .. 36
 IV.2.ii. Insulina .. 37
V. Homeostase Normal da Glicose .. 39
VI. Hormonas Incretinas .. 42
 VI.1. Peptídeo-1 semelhante ao glucagon (GLP-1) e Folipeptídeo insulimotrópico dependente da glicose (GIP) ... 43
VII. Enzima Dipeptidil Peptidase-IV ... 46
VIII. Inibidores da Enzima Dipeptidil Peptidase-IV .. 48
 VIII.1. Sitagliptina ... 49
 VIII.2. Vildagliptina .. 56
VIII.3. Associação Terapêutica ... 60
IX. Conclusão ... 63
Bibliografia .. 65
Índice de Figuras

Figura 1 – Homeostase normal da glicose (adaptado de Porte e Kahn, 1995). 40

... 47

Figura 3 – Local de ação da DPP-IV (adaptado de Mentlein et al., 1993). 47
Índice de Gráficos

Gráfico 1 – Níveis de glicose em resposta a refeições em indivíduos saudáveis (adaptado de Woorle et al., 2003). ... 41

Gráfico 2 – Níveis de insulina e de glucagon em resposta a refeições em indivíduos saudáveis (adaptado de Woorle et al., 2003). ... 41

Gráfico 3 – Efeito incretina (adaptado de McIntyre et al., 1964). ... 43

Gráfico 4 – Percentagem de doentes que atingiu níveis de HbA1C <7% (adaptado de Aschner et al., 2006 e de Raz et al., 2006). ... 55

Gráfico 5 – Inibição da DPP-IV por diferentes doses de vildagliptina (adaptado de He et al., 2007 b)). ... 57

Gráfico 6 – Efeito da vildagliptina nos níveis plasmáticos de insulina, glicose e glucagon (adaptado de He et al., 2007 b)). ... 58

Gráfico 7 – Valores de HbA1C obtidos após 24 semanas de tratamento com diferentes doses de vildagliptina (adaptado de Pi-Sunyer et al., 2007). ... 59

Gráfico 8 – Valores de glicose plasmática em jejum após 24 semanas de tratamento com diferentes doses de vildagliptina (adaptado de Pi-Sunyer et al., 2007). ... 60
Índice de Tabelas

Tabela 1 - Propriedades e ações biológicas do GIP e GLP-1 (adaptado de Drucker, 2003). 44

Tabela 2 – Parâmetros farmacocinéticos da sitagliptina em indivíduos saudáveis (adaptado de Januvia, 2006 e Vincent, 2007). ... 50

Tabela 3 – Alterações na HbA1c, GJ e GPP às 2 horas em relação aos valores basais (adaptado de Aehner et al., 2006 e de Raz et al., 2006). ... 53

Tabela 4 – Alteração dos níveis de HbA1c por valor basal (adaptado de Aehner et al., 2006 e de Raz et al., 2006). ... 54

Tabela 5 – Alteração no peso corporal em relação ao início do estudo (adaptado de Aehner et al., 2006 e de Raz et al., 2006). ... 55
Índice de Abreviaturas

ADA – American Diabetes Association
ADSE - Assistência na Doença aos Servidores Civis do Estado
AGJ – Anomalia da Glicemia do Jejum
APDP - Associação Protectora dos Diabéticos de Portugal
APMCG - Associação Portuguesa dos Médicos de Clínica Geral
ATG – Anomalia da Tolerância à Glicose
AUC – Área sob a curva
DPP-IV – Dipeptidil Peptidase-IV
EASD – European Association for the Study of Diabetes
FDA – Food and Drug Administration
GIP – Polipeptídeo insulino-trópico dependente da Glicose
GJ – Glicemia em Jejum
GLP-1 – Peptídeo-1 semelhante ao Glucagon
GPP – Glicemia Pós-Pandrial
HbA1C – Hemoglobina Glicosilada
HC – Hidratos de Carbono
HDL – High Density Lipoprotein
IDF – International Diabetes Federation
INFARMED – Autoridade Nacional do Medicamento e Produtos de Saúde, I.P.
LADA – Latent Autoimmune Diabetes in Adults
NDDG – National Diabetes Data Group
OMS – Organização Mundial de Saúde
PTGO – Prova de Tolerância à Glicose Oral
SPD – Sociedade Portuguesa de Diabetologia
SVD – Saint Vincent Declaration

$T_{1/2}$ – Tempo de semi-vida

T_{max} – Tempo de concentração plasmática máxima

WHO – World Health Organization
I. Introdução

A diabetes mellitus é hoje um dos maiores problemas de Saúde Pública. A sua incidência e prevalência têm vindo a aumentar nas últimas décadas, particularmente nos países industrializados bem como nos países em vias de desenvolvimento.

A diabetes aparece hoje como uma das primeiras causas de morbilidade e mortalidade, com elevados custos socioeconómicos na saúde individual e comunitária de todos os povos, raças e idades. Está na lista das cinco doenças com maior índice de morte no mundo. Este problema tende a agravar-se nas próximas décadas devido ao aumento da população mundial, à sua longevidade e aos estilos de vida ligados à urbanização (WHO, 1999).

A Epidemiologia, ao estudar a associação entre factores genéticos, ambientais, comportamentais, socioeconómicos e culturais, analisando-os numa perspectiva social e de Saúde Pública, obteve um grande impacto a nível de instituições como a Organização Mundial de Saúde (OMS) e o Banco Mundial, pois passaram a olhar para a diabetes como um problema de maior relevância (WHO, 1999). Nas últimas décadas, diversos estudos epidemiológicos foram realizados com repercussão sobre a investigação, a prevenção e o tipo de cuidados a prestar na diabetes (WHO, 1999).

O estudo da prevalência da diabetes pode ser obtido através de registos de doentes conhecidos (diagnosticados) ou através de rastreios populacionais. Em Portugal, como exemplos desses estudos citam-se o registo do Guia do Diabético e o Inquérito Nacional de Saúde (INFARMED a); Ministério da Saúde, 2007). A fiabilidade de qualquer dos meios utilizados nos estudos de prevalência depende da amostra seleccionada ser ou não representativa do total da população (sexo, faixa etária, densidade populacional geográfica, entre outros) (WHO, 1999).

A OMS e a International Diabetes Federation (IDF) estimam que em 2025 existirão mais de 300 milhões de diabéticos em todo o mundo, número este que poderá ascender a 366 milhões até 2030, o que torna esta situação de saúde uma verdadeira pandemia,
sendo os países mais afectados a Índia, a China e os Estados Unidos da América (WHO, 1999; Wild et al., 2004).

II. História

A primeira referência documentada sobre a diabetes encontra-se no “Papiro de Ebers”, datado de 1500 anos antes de Cristo. Neste documento são descritos sintomas, tal como a poliúria, que parecem corresponder à diabetes, porém, não é atribuído um nome específico para a doença. Presume-se que este documento terá sido escrito por um médico que era sacerdote do templo Inmhotep (Duarte, 2002).

Dez séculos depois, é encontrada uma nova referência da diabetes, desta vez na Índia, num livro escrito pelo cirurgião Sushruta. Este médico, considerado o “pai da cirurgia”, descreve a diabetes como uma doença estranha, afectando principalmente pessoas ricas, obesas e que comem muitos doces. Sushruta refere também que uma característica comum a todas estas pessoas era o odor doce da sua urina (APDP, 2004).

O termo diabetes só surgiu mais tarde, embora se desconheça quem baptizou a doença com este nome. Seguro é, o seu significado. Em grego, diabetes significa sifão ou aqueduto. A sede insaciável e a grande quantidade de urina produzida por estes doentes levaram à analogia com um sifão ou aqueduto. Aretéu de Capadócia, médico grego, observou que esta doença desenvolvia quatro complicações, daí denominá-la como a doença dos quatro pês: muita fome (polifagia), muita sede (polidipsia), muita urina (poliúria) e fraqueza (poliastenia). Aretéu constatou também que, quase sempre, as pessoas com estes sintomas entravam em estado de coma antes de morrerem. Esta situação era algo misteriosa, pois mesmo com a quantidade de alimentos que eram ingeridos, a falta de energia corporal permanecia. A origem da designação Diabetes também é atribuída aos gregos Demétrio de Apameia e Apolónio de Menfis. A mesma analogia foi realizada. Grandes quantidades de água eram ingeridas e eliminadas (polidipsia e poliúria). Assim, o corpo humano funcionava como um sifão ou aqueduto (Duarte, 2002).

Nos finais do séc. X são encontradas mais referências da diabetes no Al-Qanun (Cânone) da autoria do filósofo, físico e alquimista Avicena. Para além dos sintomas anteriormente conhecidos, os quais Avicena também descreveu, este constatou que os
resíduos da urina dos doentes apresentavam um sabor idêntico ao mel. Aliás, existem referências de que já os Romanos haviam constatado este facto, daí a origem do termo mellitus, por associação ao sabor idêntico ao mel, isto é, um sabor adoçado (Duarte, 2002). Contudo, a história não é muito clara no que diz respeito a este aspecto, e só mais tarde é que a palavra mellitus começa a ser utilizada.

É com Thomas Willis, em 1674, que na Europa se assume que a urina dos doentes diabéticos é doce. Este médico inglês comprovou tal facto ao provar a urina dos doentes. Willis descobriu também que existe um tipo de urina de doentes diabéticos que não tem o sabor doce tão característico. Surge assim a distinção entre diabetes mellitus e a diabetes insípida (Duarte, 2002).

No decorrer do séc. XVIII, principalmente na Europa, são várias as descobertas e os avanços realizados ao nível da diabetes e claro, vários nomes surgem. São de referir os nomes de: William Cullen, que reforçou a ideia da existência de dois tipos de diabetes (mellitus e insípida); Mathew Dobson, que descobriu que o sabor doce da urina devia-se à presença de açúcar, o que mais tarde lhe permitiu desenvolver métodos de análise para medir a quantidade presente; Thomas Cawley, que ao realizar uma autópsia a um doente diabético observou diversas alterações ao nível do tecido pancreático, bem como, um atrofismo deste órgão, estabelecendo assim, pela primeira vez, uma relação entre a diabetes e o pâncreas (Duarte, 2002).

Já no séc. XIX, o médico francês Michel Eugene Chevreul conseguiu separar e estudar o açúcar proveniente da urina de um diabético. Este médico demonstrou que a sua forma cristalina, a sua solubilidade em água e em álcool e o seu comportamento ao calor era em tudo similar ao açúcar proveniente da cana do açúcar. Tais observações permitiram-lhe concluir que se tratava de glicose (Duarte, 2002).

Em 1869, durante a preparação da sua tese de doutoramento, Paul Langerhans observou num pâncreas diversas áreas onde existiam células com uma coloração mais clara que as restantes, locais estes aos quais deu o nome de ilhéus, ilhéus de Langerhans. Langerhans observou também que esses ilhéus eram mais irrigados que os restantes, embora não pudesse atribuir-lhes uma função específica (Duarte, 2002).
Mais tarde, em 1889, dois cientistas alemães conseguem reproduzir em laboratório os sintomas da diabetes. Ao removerem o pâncreas a cães que não apresentavam sintomas da diabetes, Von Mering e Minkowski observaram que os cães começaram a desenvolver os sintomas da doença, levando ao seu falecimento após poucas semanas. Desta forma, estes cientistas concluíram que o pâncreas produz uma substância capaz de controlar o açúcar no sangue (Duarte, 2002).

Um dos momentos mais importantes da história da diabetes, senão mesmo o mais importante, ocorre em 1921 com a descoberta da insulina. Frederick Banting e Charles Best, dois investigadores canadenses, ao trabalharem no Departamento de Fisiologia da Universidade de Toronto, sob a orientação do seu director, J. Mcleod, e com a ajuda de J. Collip, criaram a técnica de preparação de extractos do pâncreas, isto é, conseguiram extrair insulina do pâncreas de um cão normal e injectá-la noutro cão ao qual tinha sido removido o pâncreas. Os cães diabéticos, para além de terem sobrevivido, apresentaram melhorias consideráveis (Duarte, 2002).

Até se chegar ao primeiro ensaio com humanos foi um pequeno passo. Banting e a sua equipa desenvolveram uma técnica reproduzível de preparação de extractos, conseguindo também purificar a insulina. Assim, em 1922, o doente diabético Leonard Thompson recebeu a primeira dose de insulina, provocando-lhe uma melhoria considerável do seu estado geral. Thompson continuou a receber doses de insulina, falecendo treze anos mais tarde (Duarte, 2002). Devido à descoberta da insulina, foi atribuído, em 1923, o Prémio Nobel da Medicina a Banting e a Macleod, que o dividiram com Best e Collip.

Em Portugal, um outro marco importante na história da diabetes é o ano de 1926. É neste ano que o médico português Ernesto Neves, reconhecido diabetologista devido à carreira académica que realizou principalmente em Boston aquando da descoberta da insulina, criou a Associação Protectora dos Diabéticos Pobres, hoje em dia com a designação de Associação Protectora dos Diabéticos de Portugal, a primeira e mais antiga Associação de diabéticos do mundo (Duarte, 2002).

Com os sucessivos avanços da medicina, da investigação e dos meios tecnológicos ao longo do séc. XX, foram várias as descobertas e os acoitementos que surgiram. Com importante relevância na diabetes é de realçar a descoberta da primeira biguanida, da primeira insulina de efeito prolongado (a insulina protamina), das sulfonilureias (primeira e segunda geração), bem como, a prática do doente medir regularmente a sua própria glicemia através de tiras e/ou aparelho de uso próprio (glicosímetros) (Inzucchi, 2002). Durante esta época, surgem três organizações de grande interesse: The American Diabetes Association (ADA), em 1940; a International Diabetes Federation (IDF), em 1950; e a European Association for the Study of Diabetes (EASD), em 1964.

É neste seguimento que, em Portugal, criou-se o Programa Nacional de Prevenção e Controlo da Diabetes Mellitus. Desde 1998, assiste-se a uma colaboração entre o
Ministério da Saúde e os diversos parceiros do sector, no sentido de desenvolver e implementar programas de controlo da diabetes, alicerçados em Protocolos celebrados entre o Estado e os parceiros, que têm permitido alcançar ganhos de saúde (Despacho 17988-98, INFARMED).

Neste contexto, entraram em vigor, a 1 de Abril de 2008, dois novos Protocolos da Diabetes. O Protocolo dos Dispositivos Médicos, celebrado entre o Ministério da Saúde e diversos parceiros, de que são exemplo a Associação Portuguesa da Indústria Farmacêutica, a Associação Nacional dos Importadores/Armazenistas e Retalhistas de Produtos Químicos e Farmacêuticos, a Associação Nacional de Farmácias, entre outros. Este protocolo visa: definir e estabilizar os preços das tiras-testes para determinação de glicemia, glicosúria e cetonúria, das agulhas, das seringas e das lancetas destinadas aos diabéticos, durante o seu período de vigência; e a definição do circuito organizativo de distribuição, dispensa e facturação dos dispositivos médicos abrangidos pelo presente Protocolo em termos análogos ao do medicamento. O Protocolo dos Cuidados Farmacêuticos, celebrado entre o Ministério da Saúde, a Ordem dos Farmacêuticos, a Associação Nacional das Farmácias e a Associação de Farmácias de Portugal, define a intervenção farmacêutica no que diz respeito à identificação de diabéticos não controlados e/ou a pessoas suspeitas de diabetes, com referenciação a consulta médica, bem como, à prestação de cuidados farmacêuticos às pessoas com diabetes beneficiárias do Serviço Nacional de Saúde (INFARMED a)).
III. Diabetes Mellitus

III.1. O que é a Diabetes Mellitus?

O corpo humano é composto por milhões de células que necessitam de energia para funcionar. Alguns dos alimentos que ingerimos são convertidos num açúcar chamado de glicose. Este açúcar chega às células por intermédio do sangue, sendo um dos muitos ingredientes que as células necessitam para produzir energia.

Existem duas condições necessárias para que a glicose possa entrar nas células. A primeira é que existam suficientes receptores nas células e a segunda está relacionada com a presença de insulina.

A insulina é uma hormona produzida pelas células β existentes nos ilhéus de Langerhans do pâncreas. Esta hormona é a principal responsável pela manutenção dos valores adequados de glicose no sangue, ao qual se dá o nome de glicemia. Os níveis de insulina variam de acordo com a glicemia. Quando os hidratos de carbono são ingeridos e absorvidos, a glicemia aumenta. Este aumento constitui um estímulo para a libertação de insulina. A insulina tem como função ligar-se aos receptores existentes nas células, permitindo assim a entrada de glicose para o interior destas, bem como, diminuir a produção de glicose por parte do fígado. Se ocorrer alguma anomalia no funcionamento de uma das etapas deste processo, a quantidade de glicose no sangue manter-se-á elevada, aparecendo assim o estado de hiperglicemia. Se os valores de glicemia se mantêm elevados, independentemente da sua causa, o diagnóstico de diabetes é inevitável (Endocrineweb, http://www.endocrineweb.com/diabetes/2insulin.html).

Com base nestas considerações, a diabetes pode ser definida como um grupo de patologias metabólicas que se caracteriza pelo aumento dos níveis de glicose no sangue e pela incapacidade do organismo transformar toda a glicose proveniente dos alimentos.

A OMS define a diabetes como:
(...) uma desordem metabólica de etiologia múltipla, caracterizada por uma hiperglicemia crónica com distúrbios no metabolismo dos hidratos de carbono, lipídios e proteínas, resultantes de deficiências na secreção ou acção da insulina, ou de ambas. (WHO, 1999)

São vários os mecanismos patogénicos envolvidos no desenvolvimento da diabetes. Estes incluem a destruição das células β do pâncreas, com consequente deficiência na secreção de insulina, e outros que resultam no desenvolvimento de mecanismos de resistência à acção da insulina. Podem também estar ambos os mecanismos envolvidos. Os distúrbios nos metabolismos glucídico, lipídico e proteico devem-se à deficiente acção da insulina nos tecidos alvo. Esta acção deficiente resulta da sua secreção inadequada e/ou da resposta tecidual diminuída à insulina, ao nível de uma ou mais etapas dos mecanismos de acção hormonal. É possível, coexistir no mesmo doente, uma diminuição na secreção de insulina e uma deficiência na acção de insulina, sendo por vezes difícil distinguir qual destas anomalias é a causa primária da hiperglicemia (WHO, 1999).

III.2. Classificação

Até à década de oitenta do séc. XX existia uma variedade de factos e dados sobre a diabetes resultando assim em diversos critérios de diagnóstico, de classificação, bem como, de nomenclatura. Resultante de um acordo entre representantes do National Diabetes Data Group (NDDG) e da OMS, em 1985, foram reconhecidos essencialmente seis tipos de diabetes: Diabetes Mellitus insulinodependentes (ou Tipo I); Diabetes Mellitus não insulinodependentes (ou Tipo II); Diabetes Mellitus Gestacional; Diabetes Mellitus relacionada com a má nutrição; Diminuição da Tolerância à Glicose; e Outros tipos (WHO, 1999). Esta classificação, baseada nos conhecimentos sobre a diabetes existentes na época, representou um compromisso entre diferentes pontos de vista, numa combinação entre manifestações clínicas e o tipo de tratamento exigido, e a patogénese. Foi uma classificação adoptada internacionalmente.
Com base em estudos mais recentes, a ADA propôs uma nova classificação da diabetes em 1997, adoptada também pela OMS em 1999, sendo a que vigora até aos dias de hoje e a que é utilizada em Portugal. Uma melhor compreensão das causas da diabetes permitiu estabelecer esta nova classificação, mais baseada na etiologia e na patogénese do que na terapêutica. Desta forma, esta classificação estabelece a existência de quatro tipos etiológicos de diabetes: Diabetes Tipo 1; Diabetes Tipo 2; Diabetes Mellitus Gestacional; e Outros Tipos Específicos (WHO, 1999). Curiosamente, a ADA na sua página oficial não refere Outros Tipos como uma classe, mas estabelece uma classe denominada de Pré-diabetes. Segundo a ADA, antes de uma pessoa desenvolver uma diabetes do tipo 2, passa primeiro por uma outra classe denominada de Pré-diabetes. Nesta fase, os níveis de glicose no sangue são elevados, mas não tão elevados para serem considerados níveis pertencentes a um tipo de diabetes (ADA, http://www.diabetes.org/about-diabetes.jsp). Esta classe de Pré-diabetes não é mais do que uma classe que engloba a Anomalia da Tolerância à Glicose (ATG) e a Anomalia da Glicemia do Jejum (AGJ), os quais são considerados Estágios Clínicos (ver III.2.v.).

III.2.i. Diabetes Tipo 1

A diabetes tipo 1 resulta de uma reacção auto-imune, em que o sistema imunitário do organismo destrói as células produtoras de insulina, ou seja, as células β do pâncreas. Este tipo de diabetes caracteriza-se pela presença de anticorpos anti-ácido glutâmico descarboxilase (Anti-GAD), anticorpos anti-ilhéus de Langerhans ou anticorpos de insulina, que identificam o processo auto-imune conduzindo à destruição das células β (WHO, 2006).

A razão pela qual o organismo manifesta esta reacção ainda não é totalmente conhecida. Devido à pouca ou nenhuma produção de insulina é necessária a sua administração por via injectável (WHO, 1999). A designação da classificação antiga para este tipo de diabetes provém da dependência da insulina, ou seja, Diabetes Insulinodependentes.

A OMS admite a existência de duas formas de diabetes tipo 1: a Auto-imune e a Idiopática. A auto-imune afecta, principalmente, crianças e jovens mas também pode ocorrer em adultos e idosos. O motivo da sua origem é ainda uma incógnita, no entanto,

III.2.ii. Diabetes Tipo 2

A diabetes tipo 2 caracteriza-se por um predomínio da insulinarresistência com deficiência relativa de insulina ou, um predomínio de defeitos na secreção de insulina com ou sem insulinarresistência (WHO, 1999). As pessoas com este tipo de diabetes são, frequentemente, resistentes à ação da insulina. O pâncreas é capaz de produzir insulina. Contudo, uma alimentação incorrecta, uma vida sedentária e a ausência de exercício físico tornam o organismo resistente à ação da insulina. Embora as etiologias específicas deste tipo de diabetes sejam ainda desconhecidas, por definição não ocorre destruição auto-imune das células β do pâncreas e os doentes não apresentam as causas específicas dos outros tipos de diabetes. Na maior parte dos casos, os doentes com diabetes tipo 2 não necessitam de insulina para sobreviver. Os níveis de glicose conseguem ser controlados por recurso a medicação oral (tratamento farmacológico), controlo sobre a dieta e exercício físico regular. Visto que a hiperglicemia desenvolve-se gradualmente e, nas fases mais precoces não é suficientemente grave para
que o doente manifeste quaisquer dos sintomas clássicos da diabetes, muitos casos são diagnosticados tardiamente ou ficam por diagnosticar. É a chamada evolução silenciosa. O risco de desenvolvimento deste tipo de diabetes aumenta com a idade, o excesso de peso e a ausência de exercício físico. A cetoacidose raramente ocorre de forma espontânea e quando ocorre está associada a outra patologia. A maioria dos doentes com diabetes do tipo 2 é obesa e herdou uma tendência para a diabetes, possivelmente, uma herança genética (WHO, 1999).

III.2.iii. **Diabetes Mellitus Gestacional**

A diabetes mellitus gestacional surge no decurso de uma gravidez. Este tipo de diabetes caracteriza-se por uma intolerância aos hidratos de carbono, resultando numa hiperiglicemia (WHO, 1999). Tal como aparece durante a gravidez, após o termo desta, também pode desaparecer. No entanto, o seu surgimento pode ser devido à presença de uma diabetes prévia, a qual nunca tinha sido diagnosticada, e o facto de ter ocorrido é um aviso sério de que o risco para desenvolver uma diabetes do tipo 2 é elevado. Mulheres obesas, com antecedentes familiares de diabetes mellitus gestacional ou com história familiar de diabetes são mais susceptíveis de desenvolver uma diabetes gestacional (ADA, 2004 a)).

III.2.iv. **Outros Tipos Específicos**

Na classificação de outros tipos específicos incluem-se, por exemplo, defeitos genéticos na funcionalidade das células β, defeitos genéticos na acção da insulina, doenças do pâncreas exócrino, endocrinopatias, indução por drogas ou químicos, e infecções. Embora menos comuns, os outros tipos específicos também são causa de diabetes mellitus. (WHO, 1999).
III.2. v. Estágios Clínicos

A síndrome de insulinorresistência, ou síndrome metabólica, engloba aspectos que aumentam o risco de doença cardiovascular. Estes doentes normalmente apresentam concentrações baixas de lipoproteína de alta densidade (HDL), hipertensão ou hipertrigliceridemia, que, por si só, são factores preditivos de complicações cardiovasculares (WHO, 1999) (ADA, 2003). Uma pessoa que apresente uma anormal tolerância à glicose (ATG ou diabetes), em que é detectado pelos menos um ou mais de outros factores de risco de doença cardiovascular, poderá ser diagnosticada com a síndrome metabólica (WHO, 1999). A OMS considera que não existe uma definição, acordada internacionalmente, para a síndrome metabólica (WHO, 1999). Um dado adquirido é que as características da síndrome metabólica podem estar presentes durante cerca de dez anos antes de serem detectadas as anomalias características da glicemia (Mykkänen et al., 1993).

Antes do desencadeamento da diabetes, existe um estádio de normoglicemia cujo valor ainda não tem evidência médica. Esse valor corresponde a uma concentração plasmática venosa de glicose em jejum menor que 110 mg/dl (WHO, 1999).
Os estádios clínicos permitem efectuar o diagnóstico da diabetes de uma forma mais fácil e precoce, além de alertar atempadamente para os riscos associados e, assim, conduzir à adopção de estilos de vida saudáveis capazes de prevenir a diabetes.

III.3. Complicações Resultantes da Diabetes

As complicações resultantes da diabetes podem ser agrupadas em dois grupos, as agudas e as crónicas (WHO, 1994).

Na maioria das vezes, os sintomas da diabetes não são perceptíveis, podendo existir uma hiperlicemia mantida por longos períodos de tempo, conduzindo a complicações crônicas em vários órgãos e sistemas. Esta hiperlicemia causa alterações patológicas e funcionais, antes de ser realizado qualquer tipo de diagnóstico, através da glicosilação das proteínas e de outras macromoléculas, acumulação excessiva de compostos poliolís, produzidos a partir da glicose. São exemplos de complicações crônicas casos de arteriosclerose, retinopatia (potencial causa de cegueira), nefropatia (com evolução para insuficiência renal), neuropatia (manifestações ao nível do sistema nervoso periférico e autônomo) (Morgan et al., 2000), bem como, ulcerações nos pés, amputações, entre outros. As úlceras e amputações dos pés são as principais causas de morbidade e de incapacidade, implicando elevados custos emocionais e físicos para os diabéticos. Cada tipo de complicação crônica pode apresentar diferentes manifestações (WHO, 2006).

As pessoas diabéticas têm maior incidência de doença arteriosclerótica cardiovascular, doença vascular periférica e doença vascular cerebral. A hipertensão arterial, a dislipidemia e a doença periodontal também são frequentes. O impacto emocional e social da diabetes mellitus e a sua necessidade de tratamento podem causar disfunção psicossocial nos doentes, bem como, nas suas famílias (WHO, 1999).

III.4. Diagnóstico

Os requisitos para confirmar o diagnóstico num doente com sintomatologia grave e hiperlicemia marcada diferem dos necessários para uma pessoa assintomática e com valores de glicemia ligeiramente acima dos valores de referência. O diagnóstico numa pessoa assintomática nunca pode ser feito com base num único valor anormal de glicemia. Nestas situações é essencial, pelo menos, mais um teste à glicose no sangue/plasma com valor superior aos valores de referência, quer seja em jejum, após as refeições (pós-pandrial) ou, numa prova de tolerância à glicose oral (PTGO) (WHO, 1999).

Se os testes laboratoriais não permitirem a confirmação do diagnóstico de diabetes mellitus, o doente deve ser vigiado e submetido periodicamente a outros testes até que o
diagnóstico esteja concluído. Nestas circunstâncias, outros factores devem ser tomados em consideração, tais como a etnia, a história familiar, a idade, a obesidade e a patologia concomitante, antes de serem tomadas as decisões referentes ao diagnóstico ou à terapêutica (WHO, 1999).

- Sintomas de diabetes (polyúria, polidipsia, e perda de peso inexplicável) mais concentração plasmática de glicose ocasional (a qualquer hora do dia, sem relação com a hora da última refeição) ≥ 200 mg/dl;
- Glicemia plasmática em jejun ≥ 126 mg/dl. O jejun define-se como ausência de ingestão calórica pelo menos durante 8 horas;
- Glicemia plasmática às 2 horas na Prova de Tolerância à Glicose Oral (PTGO) com 75g de glicose ≥ 200 mg/dl.

Face a uma glicemia elevada devem ser excluídos alguns factores que podem ser responsáveis por essa elevação, sendo eles: jejun inferior a 8 horas ou superior a 16 horas (influência da alimentação); condições de stress agudo (infeccioso, traumático); gravidez; falta de exercício físico; certos fármacos (tiázidas, ciclosporina) (ADA, 2003).

O processo mais rápido e fácil de realizar o diagnóstico da diabetes é efectuar o teste de glicemia capilar (picada no dedo). Actualmente, estes testes, para além de serem realizados em Hospitais e Centros de Saúde, são realizados na grande maioria das farmácias em Portugal. O teste deve ser realizado em jejun, ou então uma ou duas horas após as refeições (Sacher e McPherson, 2000). Este teste é o mais utilizado pelos doentes diabéticos para controlar os valores da glicemia ao longo do dia. A fácil auto-execução do teste e a facilidade de transporte dos aparelhos que os realizam permitem aos diabéticos um melhor controlo da glicemia.

Para estabelecer um diagnóstico da diabetes mais rigoroso é aconselhável realizar a determinação da glicemia, em jejun, através de uma colheita de sangue por punção
venosa (Sacher e McPherson, 2000). Esta determinação é realizada em laboratório de análises clínicas.

Na determinação da glicemia em jejum, os valores de referência são (WHO, 1999; ADA, 2003):

- Glicemia de jejum < 110 mg/dl – valor dentro dos parâmetros normais;
- Glicemia de jejum ≥ 110 mg/dl e < 126 mg/dl – Anomalia da Glicemia de Jejum (AGJ);
- Glicemia de jejum ≥ 126 mg/dl – diagnóstico provisório de diabetes (o diagnóstico deve ser confirmado).

Neste último caso, o diagnóstico deve ser confirmado realizando a Prova de Tolerância à Glicose Oral (PTGO). Este teste baseia-se na obtenção de uma amostra de sangue em jejum. Seguidamente, fornece-se uma solução bebível, que contém uma quantidade normalizada de glicose (75 g), e realiza-se nova colheita após duas horas. Se ao fim deste tempo, a glicose sanguínea retomar os valores dentro dos parâmetros normais, o diagnóstico de diabetes não é confirmado (WHO, 1999; ADA, 2003).

Os valores correspondentes, quando se utiliza a PTGO, são os seguintes (WHO, 1999; ADA, 2003):

- Glicemia às 2 horas de sobrecarga de glicose < 140 mg/dl – tolerância normal à glicose;
- Glicemia às 2 horas de sobrecarga de glicose ≥ 140 mg/dl e < 200 mg/dl – Anomalia da Tolerância à Glicose (ATG);
- Glicemia às 2 horas de sobrecarga de glicose ≥ 200 mg/dl – diabetes mellitus.

O teste da Hemoglobina glicosilada (HbA1c) é outro método para avaliar o estado de controlo da diabetes. A HbA1c corresponde a uma parte do açúcar que circula no sangue e que se liga à hemoglobina dos glóbulos vermelhos. Quanto mais açúcar existe no
sangue, mais glóbulos vermelhos têm glicose ligada à sua hemoglobina e maior será o valor da HbA1c. Nos indivíduos normais, 3 a 6% da hemoglobina encontra-se glicosilada na forma denominada HbA1c. A análise da HbA1c pode revelar o grau de controlo dos últimos dois a três meses (Sacher e McPherson, 2000).

Há ainda algumas pessoas com diabetes que fazem a determinação de glicosúria (fita na urina), mas este é um método que tem falhas (nem sempre ter muito açúcar na urina significa ter muito açúcar no sangue e o contrário também é verdadeiro).
IV. Terapêutica

O objectivo do tratamento da diabetes é manter os valores de glicose no sangue dentro de parâmetros considerados normais, ou pelo menos perto da normalidade, para que seja menor a probabilidade de aparecerem complicações, quer sejam temporárias, quer a longo prazo.

Uma das principais terapêuticas da diabetes consiste no tratamento não farmacológico, baseado numa alimentação correcta e na prática de exercício físico. Ambos os casos devem ser individualizados consoante as condições de cada doente.

Doentes com diabetes tipo 2 podem necessitar de agentes orais hipoglicemiante e/ou administração de insulina, enquanto doentes com diabetes tipo 1 necessitam de insulina para sobreviver.

Em algumas das terapêuticas existentes, o controlo glicémico é frequentemente inadequado, uma vez que este controlo falha com o tempo. Muitos dos doentes não atingem os alvos glicémicos. Os resultados obtidos no United Kingdom Prospective Diabetes Study (UKPDS), um estudo de referência no universo da diabetes, indicaram uma deterioração uniforme no controlo da glicemia. Doentes com diabetes tipo 2 que foram controlados intensivamente com sulfonylureias, biguaninas e com insulina, continuaram a registar uma deterioração gradual no controlo glicémico e um aumento da HbA1c ao longo do tempo (UKPDS, 1995).

Um plano de tratamento da diabetes pode incluir várias estratégias: uma consciencialização e educação do doente para a adesão a um tipo de terapêutica, um plano alimentar e recomendações nutricionais, a prática de exercício físico, agentes antidiabéticos, insulina, e uma gestão das complicações associadas (WHO, 2003).
IV.1. Terapêutica Não Farmacológica

IV.1.i. Alimentação

A diabetes é uma doença com um longo período assintomático e sem alterações bioquímicas detectáveis. Esta doença aparece com maior frequência em grupos de risco familiar (genético) e ambientais relacionados com hábitos de sedentarismo, hábitos alimentares excessivos, obesidade, tabaco, álcool e stress.

A alteração do estilo de vida, pela adopção de medidas alimentares e da prática de exercício físico que conduzam à normalização progressiva do peso, com perdas, mesmo consideradas pequenas desde que mantidas, é fundamental no tratamento da diabetes e deve ser mantida em todo o percurso terapêutico (ADA, 2005).

Não há uma dieta padrão. Cada diabético deve ter o seu próprio plano alimentar. O regime alimentar deve ser individualizado, consoante cada situação, atendendo a factores como idade, estilo de vida ou estado de nutrição.

No entanto, existem algumas regras básicas a considerar. Segundo Caldeira, as regras básicas da alimentação na diabetes são (Caldeira, 2004):

- Fraccionamento de refeições (evitar intervalos de mais de três horas durante o dia e oito horas nocturnas);
- Cumprir as regras básicas da proporção dos nutrientes (50-55% hidratos de carbono (HC), 10-15% de proteínas, sendo a gordura máxima recomendada 30-35%) – saber trocar alimentos mantendo a proporção dos nutrientes;
- Ter em conta os alimentos com equivalente em HC para o controlo glicémico;
- Ter em conta as calorias quando houver excesso de peso.

A maioria dos problemas de saúde ligados à alimentação aparece de forma gradual e não com sintomas imediatos e sensíveis, o que diminui potencialmente a percepção da susceptibilidade a uma dieta incorrecta (Hu et al., 2001).
Do ponto de vista da intervenção clínica, as atividades a recomendar aos doentes, centradas na promoção do exercício e de um regime alimentar saudável, devem ser baseadas em inquéritos dos hábitos de actividade física (possibilidades, preferências e adequação ao estado clínico) e alimentares (horários, número de refeições e preferências alimentares) para que, utilizando tabelas de alimentos, possam definir em conjunto, médico e doente, hipóteses de regimes alimentares alternativos adaptados ao modo de vida e que contribuam não só para a melhoria do controlo metabólico como para uma melhoria da qualidade de vida (Hu et al., 2001).

IV.1.ii. Exercício Físico

O exercício físico contribui para a prevenção primária da diabetes e das doenças cardiovascular, mas também aumenta a sensação de bem-estar físico e psíquico quando praticado com regularidade, reduzindo o stress psico-social (Helmrich et al., 1991).

Todas as pessoas com diabetes devem ter conhecimento dos benefícios mas também dos riscos associados a um exercício não adaptado ao seu estado, tais como hipoglicemia, angina de peito, problemas ósseos ou musculares, ou até mesmo enfarte do miocárdio. Por esta razão deve-se efectuar um exame clínico antes de se iniciar a prática do exercício físico. Por outro lado, para além dos benefícios já descritos, ainda apresenta uma melhoria do controlo glicémico, uma redução dos factores de risco cardiovascular e contribui para a perda de peso (Helmrich et al., 1991).

No que diz respeito à diabetes tipo 2, esta tem na sua etiopatogenia a obesidade, o sedentarismo e o stress, para além de uma eventual predisposição genética. No desenvolvimento da perturbação metabólica, que acaba por determinar o aparecimento da diabetes, o músculo tem um papel muito importante. No seu conjunto, a totalidade da massa muscular é o tecido mais abundante e que mais glicose consome. O músculo, tal como o figado, acaba por se tornar resistente à insulina e, assim, diminui o consumo de glicose (Eriksson e Lindgarde, 1991).
A actividade física, além de vários outros efeitos, aumenta o consumo de glicose pelo músculo, diminuindo a resistência à acção da insulina. Desta forma, o exercício físico pode contribuir para a prevenção da diabetes tipo 2 e redução da insulino-resistência, com melhoria do controlo metabólico (Eriksson e Lindgarde, 1991).

IV.2. Terapêutica Farmacológica

IV.2.i. Tratamento Farmacológico Oral da Hiperiglicemia

O tratamento farmacológico oral usado na diabetes pode ser dividido em (Inzucchi, 2002 e ADA, 2004 b):

- Secretagogos da Insulina ou Fármacos Insulinotrópicos,
 1. Sulfonilureias;
 2. Meglitinidas;
- Sensibilizadores da Insulina,
 1. Glitazonas (Tiazolidinedionas);
 2. Biguaninas;
- Inibidores das α-glucosidases;
- Análogos das Incretinas e Inibidores da DPP-IV;
- Associações Terapêuticas.

As sulfonilureias actuam no pâncreas, aumentando a secreção endógena de insulina, independentemente do ambiente sanguíneo glicémico (Inzucchi, 2002).

As meglitinidas ou glinidas estimulam a secreção de insulina, de uma forma rápida e durante curto tempo, em presença de glicose e em função dos seus níveis sanguíneos (Inzucchi, 2002).

As glitazonas têm a capacidade de aumentar a captação de açúcar pelas células. Estes fármacos diminuem a insulino-resistência tornando assim os músculos e as células
adiposas mais sensíveis à insulina. Também apresentam a capacidade de diminuir a produção hepática de glicose (Miyazaki et al., 2002).

As biguanidas diminuem a produção hepática da glicose e aumentam a captação periférica da glicose mediada pela insulina. Para além disso, elevam os níveis do GLP-1 possivelmente aumentando a sua síntese e não por inibição da DPP-IV (Yasuda et al., 2002).

Os inibidores das α-glucosidases têm a capacidade de bloquear a acção destas enzimas, atrasando a digestão e a absorção de açúcares, diminuindo o aumento da glicemia que geralmente ocorre após as refeições (Inzucchi, 2002).

Os análogos das incretinas, também conhecidos como agonistas do receptor da GLP-1, apresentam como principal acção o aumento da secreção de insulina, a inibição da secreção de glucagon e o atraso do esvaziamento gástrico. A exenatide, forma sintética do exendin-4 obtido na saliva do monstro de gila (uma espécie de lagarto), é um exemplo de um análogo da incretina (Eng, 1992). Os inibidores da DPP-IV serão um tema a desenvolver noutro capítulo.

As associações terapêuticas realizam um sinergismo aos diferentes mecanismos de acção. Têm como objectivo maximizar a eficácia e minimizar os efeitos secundários. As combinações possíveis são diversas, podendo-se realizar uma combinação dupla ou até mesmo uma combinação tripla. São exemplo de combinações uma sulfonilureia com uma biguanida, uma glitazona com uma biguanida, uma sulfonilureia com um inibidor da α-glucosidase, ou ainda, uma sulfonilureia com uma biguanida e com uma glitazona (Yale et al., 2001; Inzucchi, 2002).

IV.2.ii. Insulina

A insulina, à semelhança de outras hormonas, é uma proteína de pequenas dimensões, considerada por muitos como a proteína do séc. XX dada a importância fundamental no tratamento da diabetes.
É sintetizada pelas células β dos ilhéus de Langerhans, inicialmente como pró-hormona (pré-pró-insulina), seguindo-se a pró-insulina e após uma clivagem origina a insulina. É secretada continuamente em resposta à subida da glicemia ou por acção de estimulantes (Duarte, 1997).

A obtenção de insulina, originalmente, surgiu a partir de extractos pancreáticos de origem bovina e porcina, purificados por recristalização. Mais tarde surgem outros métodos, tais como a técnica por filtração de gel, ou ainda a cromatografia de troca iónica. Actualmente, para obter insulina usa-se a engenharia genética, isto é, a biotecnologia, através da técnica de DNA recombinante. Nesta técnica recorre-se a células de bactérias (Escherichia coli) e leveduras (Saccharomyces cerevisae), nas quais se incluem plasmídeos que contêm a sequência da molécula que se pretende obter (Duarte, 2002; INFARMED b)).

A insulina é absorvida, após injeccão subcutânea (via subcutânea), directamente para a corrente sanguínea a uma velocidade dependente de factores tais como local de injeccão, temperatura ambiente e tipo de insulina. A insulina pode também ser administrada por via intravenosa ou por perfusão contínua (INFARMED b)).

Existem diversos tipos de insulina. A sua divisão baseia-se na farmacocinética, isto é, na velocidade de início de acção, no tempo para atingir a concentração plasmática máxima e na duração de acção. Assim, existem quatro tipos de insulina: insulina de acção ultra curta ou ultra rápida; insulina de acção curta ou rápida; insulina de acção intermédia; e insulina de longa duração de acção ou acção lenta (INFARMED b)).

Em tratamento convencional, a administração de insulina realiza-se duas vezes ao dia. No caso de tratamento intensivo, a administração pode ser feita três ou mais vezes por dia.

O tratamento com o recurso da insulina deve ser adaptado a cada pessoa, dependendo de diversos factores como a idade, hábitos alimentares, horários de trabalho, estabilidade da diabetes, entre outros. Existem vários esquemas possíveis, mas o objectivo principal a atingir é que o doente tenha um bom controlo da diabetes.
V. Homeostase Normal da Glicose

A homeostase normal da glicose é mantida através de mecanismos de elevada complexidade, que envolvem a interacção entre hormonas produzidas pelos ilhéus de Langerhans (insulina e glucagon), os órgãos alvo e os tecidos. Quando a glicose entra na circulação sanguínea, o aumento da concentração de glicemia estimula a libertação de insulina pelas células β do pâncreas. A insulina suprime a produção de glicose por parte do figado e aumenta a sua captação pelo músculo e pela gordura, levando assim a uma diminuição da concentração da glicemia (Porte e Kahn, 1995).

O glucagon desempenha também um papel muito importante na regulação dos níveis de glicemia. Produzido pelas células α do pâncreas, o glucagon estimula a produção de glicose no figado. Quando os níveis de glicemia são baixos, por exemplo após um jejum, existe secreção de glucagon. Esta hormona estimula a produção hepática de glicose. A glicose quando libertada na circulação sanguínea, aumenta as concentrações de glicemia (Porte e Kahn, 1995).

Numa situação de hiperгlicemia, os ilhéus de Langerhans detectam concentrações elevadas de glicemia, induzindo o aumento de insulina e a diminuição da secreção de glucagon. Numa situação de hipoglicemia, a deteção de concentrações mais baixas de glicemia pelos ilhéus de Langerhans resulta numa redução da secreção de insulina e num aumento da secreção de glucagon (Figura 1) (Porte e Kahn, 1995).
A regulação normal da glicemia depende de uma inter-relação constante entre glicose, insulina e glucagon.

Os níveis de glicemia são mantidos dentro de limites relativamente estreitos, a seguir à ingestão de uma refeição, devido a alterações na secreção de insulina e de glucagon. Após a ingestão de uma refeição, a glicemia atinge o seu pico máximo nos 60 minutos seguintes, retomando os níveis pré-prandiais após 4 horas (Gráfico 1) (Woebrle et al., 2003).
Diabetes Mellitus

Gráfico 1 – Níveis de glicose em resposta a refeições em indivíduos saudáveis (adaptado de Woerle et al., 2003).

As alterações dos níveis de insulina evoluem paralelamente com as dos níveis de glicemia, aumentando rapidamente até atingir o pico máximo após cerca de 60 minutos e retornando aos valores basais decorridos cerca de 4 a 5 horas. As alterações dos níveis de glucagon seguem um padrão recíproco, descendo até ao seu ponto mínimo após 90 minutos da ingestão de uma refeição, aumentando em seguida, de uma forma gradual, para níveis superiores aos basais, isto é, cerca de 4 a 5 horas depois (Gráfico 2) (Woerle et al., 2003).

Gráfico 2 – Níveis de insulina e de glucagon em resposta a refeições em indivíduos saudáveis (adaptado de Woerle et al., 2003).
VI. Hormonas Incretinas

As hormonas incretinas são hormonas produzidas no intestino, que apresentam grande importância na regulação do metabolismo da glicose. Estas hormonas são libertadas em resposta à ingestão de nutrientes orais, onde se inclui a glicose, os ácidos gordos e as fibras dietéticas. A sua libertação é rápida, sendo detectados valores elevados destas hormonas aproximadamente 15 minutos após uma refeição. Também rápida é a degradação e eliminação destas hormonas (Meier e Nauck, 2004). A função das hormonas incretinas é a de potenciar a secreção de insulina pelas células β pancreáticas, como resposta à subida dos níveis de glicemia após a ingestão de uma refeição. É estimado que 50% a 60% da secreção total de insulina, em resposta à ingestão de alimentos, é causada por estas hormonas (Creutzfeldt e Nauck, 1992).

Em 1979, Creutzfeldt definiu que uma incretina era uma hormona que apresentava os seguintes critérios: era libertada pelo intestino em resposta à ingestão de nutrientes, principalmente hidratos de carbono; estimulava a libertação de insulina atingindo valores normais de concentração de uma forma rápida, após a ingestão de uma refeição; e causava uma libertação de insulina dependente da glicose (Creutzfeldt, 1979). Presumiu-se assim que determinadas hormonas gastrintestinais deveriam ter uma ação aditiva sobre a secreção de insulina estimulada pela glicose administrada por via oral.

Estudos realizados na década de 1960 demonstraram que a administração oral de glicose produzia uma resposta de secreção de insulina superior à de uma perfusão intravenosa de glicose, apesar de se registrar níveis de glicemia mais elevados após a administração desta última (Elrick et al., 1964; McIntyre et al., 1965). Este efeito é designado por efeito incretina (Gráfico 3). O efeito incretina significa que a ingestão oral de glicose estimula a libertação das hormonas incretinas pelo intestino e que estas hormonas aumentam a secreção de insulina, para além da secreção que resulta da própria glicose absorvida (Vilsbøll e Holst, 2004).
VI.1. Peptídeo-1 semelhante ao glucagon (GLP-1) e Polipeptídeo inulinotrópico dependente da glicose (GIP)

Apesar de existirem, provavelmente, mais hormonas que são libertadas após a ingestão de uma refeição, e com efeito na secreção de insulina, existem duas hormonas incretininas principais: o peptídeo-1 semelhante ao glucagon (GLP-1); e o polipeptídeo inulinotrópico dependente da glicose (GIP) (Vilsboll e Holst, 2004).

O GIP e o GLP-1 pertencem à superfamília do peptídio glucagon, tendo em comum diversos aminoácidos na sua constituição (Drucker, 2003). Ambos estimulam a secreção de insulina durante o estado de hiperglicemia, não ocorrendo tal estimulação no estado de normoglicemia ou de hipoglicemia (Creutzfeldt, 1979). A secreção de insulina induzida por estas hormonas incretininas termina quando a normoglicemia é alcançada, minimizando assim o risco de hipoglicemia (Ranganath, 2008).

O GLP-1 é uma hormona incretina segregada pelas células L da mucosa intestinal, mais concretamente no íleo e no cólon. A sua secreção ocorre após a ingestão das refeições. Tem como funções estimular a secreção de insulina dependente da glicose, inibir a secreção de glucagon e a produção hepática de glicose, atrasar o esvaziamento gástrico, diminuir a saciedade e aumentar a massa das células β pancreáticas. Os receptores desta
hormona são as células β e α dos ilhéus de Langerhans, tecido adiposo e cérebro. A sua forma activa, GLP-1 [7-36], é rapidamente degradada pela enzima Dipeptidil peptidase-IV (DPP-IV), originando o metabolito inactivo GLP-1 [9-36] (Drucker, 2003).

O GIP é um péptido composto por 42 aminoácidos. É segregado por células endócrinas específicas, denominadas de células K, localizadas no duodeno e no jejuno proximal (Bell et al., 1983). A sua secreção é estimulada pelos hidratos de carbono absorvíveis e por lípidos. Basicamente, é estimulada em resposta à ingestão de uma refeição. Os receptores do GIP encontram-se, para além dos ilhéus pancreáticos, no intestino, no tecido adiposo, no coração, e em várias regiões do cérebro. A acção principal desta hormona é estimular a secreção de insulina dependente de glicose. Ao contrário do GLP-1, o GIP apresenta efeitos mínimos na estimulação da secreção de glucagon e no esvaziamento gástrico, bem como, efeitos não significativos ao nível da saciedade e do peso corporal. Apresenta também capacidade de promover a proliferação das células β. A sua forma activa, GIP[1-42], é também rapidamente inactiva pela enzima DPP-IV, originando o metabolito inactivo GIP [3-42] (Drucker, 2003; Vilsboll e Holst, 2004).

Na tabela 1 encontram-se resumidas as funções das duas hormonas.

<table>
<thead>
<tr>
<th>GIP</th>
<th>GLP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Péptido composto por 42 aminoácidos</td>
<td>Péptido composto por 30/31 aminoácidos</td>
</tr>
<tr>
<td>Libertado pelo duodeno</td>
<td>Libertado pelo intestino delgado distal e pelo cólon</td>
</tr>
<tr>
<td>Extremidade NH₂-terminal inactivada pela DPP-IV</td>
<td>Extremidade NH₂-terminal inactivada pela DPP-IV</td>
</tr>
<tr>
<td>Stimula secreção de insulina</td>
<td>Stimula secreção de insulina</td>
</tr>
<tr>
<td>Efeito mínimo no esvaziamento gástrico</td>
<td>Inibe o esvaziamento gástrico</td>
</tr>
<tr>
<td>Sem efeito na secreção de glucagon</td>
<td>Inibe a secreção de glucagon</td>
</tr>
<tr>
<td>Sem regulação da saciedade e do peso corporal</td>
<td>Inibe o apetite e o aumento de peso</td>
</tr>
<tr>
<td>Promove a expansão da massa celular β pancreática</td>
<td>Promove a expansão da massa celular β pancreática</td>
</tr>
<tr>
<td>Secreção normal em indivíduos diabéticos</td>
<td>Secreção reduzida em indivíduos diabéticos</td>
</tr>
<tr>
<td>Resposta deficiente na diabetes tipo 2</td>
<td>Resposta preservada na diabetes tipo 2</td>
</tr>
</tbody>
</table>
Pelos suas características, as duas hormonas incretinas supra-citadas apresentam acções de grande importância para a regulação da glicemia. Ambas possuem uma existência muito curta. Tanto o GLP-1 como o GIP são rapidamente inactivados, em cerca de 1 a 2 minutos, pela DPP-IV (Drucker, 2003).
VII. Enzima Dipeptidil Peptidase- IV

A DPP-IV foi descrita pela primeira vez em 1966 como glicina-prolina β-naftilamidase (Hopsu-Havu e Glenner, 1966), sendo mais tarde caracterizada como uma glicoproteína transmembranar exopetidase, com um peso molecular de 110 kDa (De Meester et al., 2003; Lambeir et al., 2003).

A DPP-IV é uma enzima pertencente à família das enzimas prolil-oligopeptidases, que existe ligada às membranas celulares de muitos tecidos ou sob a forma solúvel (no plasma e em fluidos corporais). Apresenta uma distribuição uniforme, encontrando-se altamente expressa na superfície apical de células endoteliais e em células epiteliais diferenciadas. Elevadas concentrações da DPP-IV estão presentes nos túbulos proximais dos rins, nos intestinos e na medula óssea. Por outro lado, baixas concentrações encontram-se no fígado, pâncreas, baço, na placenta, em células epiteliais, no endotélio vascular e em células linfóides e mielóides (Weber, 2004; McIntosh et al., 2005). A função desta enzima no humano é a degradação do GLP-1 e do GIP (Figura 2) (Drucker, 2003). A DPP-IV é uma proteína membrana iatral do tipo II, composta por um domínio N-terminal hidrofóbico, uma região transmembranar, e um domínio C-terminal que contém a tríade catalítica que actua nos oligopéptidos (Hashikawa et al., 2004). A DPP-IV actua por remoção selectiva de dipéptidos na extremidade N-terminal em oligopéptidos, preferencialmente nos aminoácidos prolina (Pro), alanina (Ala) e serina (Ser), situados na penúltima posição (posição 2) (Figura 3) (McIntosh et al., 2005).

Também está provado, que a enzima DPP-IV consegue remover, embora de uma forma menos eficiente, dipéptideos na extremidade N-terminal, com hidroxiprolina, dehidroprolina, glicina, valina, treonina ou leucina como penúltimo aminoácido (Kieffer et al., 1995; Mentelein et al., 1993). Para além desta função catalítica, a DPP-IV desempenha um papel importante nas ligações entre as células e diversas proteínas (Hashikawa et al., 2004).

Figura 3 – Local de acção da DPP-IV (adaptado de Mentelein et al., 1993).
VIII. Inibidores da Enzima Dipeptidil Peptidase – IV

O aumento dos níveis circulantes das hormonas incretinas, para reduzir os níveis de glicemia, constitui uma nova abordagem no tratamento da diabetes tipo 2 (Drucker, 2003). A capacidade das hormonas incretinas, nomeadamente do GIP e do GLP-1, potenciarem a secreção da insulina induzida pela glicose, torna-as alvos atraetivos da terapêutica antidiabética (Drucker, 2003; Vilsboll e Holst, 2004). Os efeitos adicionais do GLP-1 sobre a secreção do glucagon, o esvaziamento gástrico e a saciedade são também desejáveis no contexto do tratamento da diabetes tipo 2 (Vilsboll e Holst, 2004). O GLP-1 e o GIP promovem a expansão das células β pancreáticas, para além de estimularem a secreção de insulina, conforme foi demonstrado em diversos estudos (Drucker, 2003; Vilsboll e Holst, 2004).

Tanto o GLP-1 como o GIP são rapidamente inactivados da sua acção biológica pela enzima DPP-IV. De modo a aumentar os níveis circulantes destas hormonas na forma activa, surgiram diversos agentes com a função de inibir a enzima DPP-IV (Meier e Nauck, 2004).

Os inibidores da DPP-IV são uma classe de agentes antidiabéticos orais para o tratamento da diabetes tipo 2 (Miller e Onge, 2006; Drucker, 2003).

Um agente inibidor da DPP-IV actua como potenciador das hormonas incretinas, conduzindo a um aumento da libertação de insulina e a uma redução da secreção de glucagon. Após uma refeição, o GLP-1 e o GIP, são libertados pelo intestino. A DPP-IV inactiva a maior parte das incretinas libertadas, antes que estas atinjam o pâncreas. Os inibidores da DPP-IV exercem a sua acção em doentes com diabetes tipo 2, pela inibição da enzima, impedindo a degradação das incretinas. Consequentemente, as incretinas activas são capazes de atingir o pâncreas onde ajudam a melhorar a homeostase da glicose. Ao aumentar e prolongar os níveis de incretinas activas, os inibidores da DPP-IV aumentam a síntese e a libertação de insulina e diminuem os níveis de glucagon na circulação, de um modo dependente da glicose. Estes efeitos agem conjuntamente de forma a suprimir a produção de glicose hepática, enquanto o
aumento da insulina facilita ainda a absorção de glicose pelos tecidos periféricos. A redução da produção de glicose hepática e o aumento da absorção da glicose sanguínea pelos tecidos periféricos ajudam a reduzir os níveis de glicemia (Drucker, 2003).

Os inibidores da DPP-IV actualmente utilizados na terapêutica são as gliptinas. Princípios activos tais como a sitagliptina, a vildagliptina, saxagliptina, e a alogliptina (Ahrén, 2007).

VIII.1. Sitagliptina

A sitagliptina foi o primeiro agente mundialmente conhecido pertencente a esta classe dos inibidores da DPP-IV (Zerilli, 2007). Em Outubro de 2006, a Food and Drug Administration (FDA) aprovou o uso da sitagliptina fosfato, quer em monoterapia quer em associação com a metformina ou com as tiazolidinedionas, com o intuito de melhorar o controlo glicémico em doentes com diabetes tipo 2, para além da sua conjugação com um estilo de vida saudável, adoptando medidas como uma alimentação correcta e a prática de exercício físico (FDA, http://www.fda.gov/bbs/topics/NEWS/2006/NEW01492.html).

A sitagliptina fosfato \((C_{16}H_{15}F_6N_5O.H_3PO_4.H_2O)\) é um potente e competitivo inibidor reversível da enzima DPP-IV. O enantiômero S é consideravelmente menos potente do que o enantiômero R. Para além disso, é altamente selectivo para a enzima DPP-IV quando comparado com outras enzimas similares, como por exemplo a DPP-8 e a DPP-9 (Deacon, 2005). A baixa afinidade para com estas duas últimas enzimas é um factor muito importante no tratamento do diabetes tipo 2. Um estudo pré-clínico revelou que a inibição da DPP-8 e da DPP-9 está associada a uma toxicidade severa, onde se incluem casos de alopécia, discrasias sanguíneas e mudanças histopatológicas de diversos órgãos (Lankas et al., 2005).

A sitagliptina possui uma absorção rápida. Vários estudos demonstraram que os picos das concentrações plasmáticas ocorreram no período de 1 a 4 horas após a
administração oral. Nestes estudos a biodisponibilidade absoluta da sitagliptina foi de aproximadamente 87% (Bergman et al., 2006; Januvia, 2006; Vincent, 2007).

O volume de distribuição em estado de equilíbrio, após a administração de uma dose intravenosa única de 100 mg de sitagliptina a indivíduos saudáveis, foi de aproximadamente 198 litros. A sitagliptina apresentou uma ligação reversível de apenas 38% às proteínas plasmáticas (Januvia, 2006; Vincent, 2007).

A sitagliptina apresentou uma percentagem de eliminação de aproximadamente 79%, sendo essencialmente eliminada sob a forma inalterada na urina. Após a administração oral de uma dose de sitagliptina, verificou-se que cerca de 16% da radioatividade foi excretada sob a forma de metabolitos (Januvia, 2006; Vincent, 2007).

Após a administração de uma dose oral de sitagliptina a indivíduos saudáveis, cerca de 100% da radioatividade administrada foi eliminada nas fezes (13%) ou na urina (87%) no período de uma semana. A semi-vida terminal e a depuração renal, após uma dose oral de 100 mg, foram de aproximadamente 12,4 horas e 350 ml/min, respectivamente. A eliminação da sitagliptina processa-se principalmente por excreção renal, envolvendo uma secreção tubular activa (Tabela 2) (Januvia, 2006; Vincent, 2007).

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodisponibilidade</td>
<td>87%</td>
</tr>
<tr>
<td>Volume de distribuição</td>
<td>~198 L</td>
</tr>
<tr>
<td>Ligação a proteínas</td>
<td>38%</td>
</tr>
<tr>
<td>T<sub>max</sub></td>
<td>1 a 4h</td>
</tr>
<tr>
<td>Metabolismo</td>
<td>Metabolismo hepático mínimo</td>
</tr>
<tr>
<td>Eliminação</td>
<td>87% urina</td>
</tr>
<tr>
<td></td>
<td>13% fezes</td>
</tr>
<tr>
<td>Fim do T<sub>1/2</sub></td>
<td>~12,4h</td>
</tr>
<tr>
<td>Eliminação renal</td>
<td>~350 ml/min</td>
</tr>
</tbody>
</table>
Como já foi referido, a sitagliptina é um inibidor potente e altamente selectivo da enzima DPP-IV. Num estudo de doses múltiplas foi comprovado que a administração oral de sitagliptina a indivíduos saudáveis (n=56), em doses diárias ≥ 50 mg, induziu uma inibição ≥ 80% da actividade da DPP-IV, durante um período de 24 horas, resultando num aumento dos níveis pós-prandiais do GLP-1 activo, duas a três vezes superior em relação ao placebo (Bergman et al., 2006).

Em doentes com diabetes tipo 2, a administração de uma dose oral única de sitagliptina induziu a inibição da DPP-IV durante um período de 24 horas, resultando num aumento de duas a três vezes superior dos níveis circulantes do GLP-1 e do GIP activos, aumento dos níveis plasmáticos de insulina e do peptido C, diminuição da concentração de glucagon, redução dos níveis de glicose em jejum e redução da excreção da glicose, após uma sobrecarga oral de glicose ou uma refeição (Januvia, 2006; Vincent, 2007).

Dois estudos multicêntricos, com dupla ocultação, aleatorizados, controlados com placebo, avaliaram a eficácia e segurança da monoterapia com sitagliptina no tratamento da diabetes tipo 2. Um dos estudos teve a duração de 18 semanas e outro de 24 semanas (Aschner et al., 2006; Raz et al., 2006). Nestes estudos, os doentes com diabetes tipo 2, cujo controlo glicémico era inadequado com dieta e exercício, foram distribuídos aleatoriamente num rácio de 1:1:1 no estudo de 24 semanas e num rácio de 2:2:1 no estudo de 18 semanas pelo tratamento com sitagliptina 100 mg ou placebo, uma vez por dia. Ambos os estudos tinham como objectivos primários a avaliação do efeito da sitagliptina em comparação com placebo na HbA1C e a avaliação do perfil de segurança e de tolerância da sitagliptina. Como objectivos secundários, os estudos apresentavam a avaliação do efeito da sitagliptina, em comparação com placebo, na glicemia em jejum (GJ), e nos níveis de glicose pós-prandial às 2 horas (GPP às 2 horas).

Os estudos apresentavam como grupos de tratamento:

- Estudo de 18 semanas
 - Sitagliptina 100 mg, uma vez por dia (n=205);
Placebo (n=110).

- Estudo de 24 semanas
 - Sitagliptina 100 mg, uma vez por dia (n=238);
 - Placebo (n=253).

Os critérios de admissão eram:

- 18-75 anos de idade;
- HbA1C ≥ 7% e ≤ 10%;
- Uma das seguintes condições
 - Não estar sujeito a qualquer medicação hipoglicemiante (sem tratamento ≥ 8 semanas);
 - Estar a ser tratado com um único fármaco hipoglicemiante;
 - Estar a receber doses baixas de dois fármacos administrados em associação por via oral.

Os resultados são apresentados nas tabelas 3, 4, 5 e no gráfico 4.
Tabela 3 – Alterações na HbA1C, GJ e GPP às 2 horas em relação aos valores basais (adaptado de Aschner et al., 2006 e de Raz et al., 2006).

<table>
<thead>
<tr>
<th></th>
<th>Estudo de 18 semanas</th>
<th>Estudo de 24 semanas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sitagliptina</td>
<td>Placebo</td>
</tr>
<tr>
<td>HbA1C (%)</td>
<td>n=193</td>
<td>n=103</td>
</tr>
<tr>
<td>Valores basais (média)</td>
<td>8,04</td>
<td>8,05</td>
</tr>
<tr>
<td>Alteração em relação aos valores basais (média ajustada)</td>
<td>-0,48</td>
<td>0,12</td>
</tr>
<tr>
<td>Diferença em relação ao placebo (média ajustada)</td>
<td>-0,60<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>GJ (mmol/L)</td>
<td>n=201</td>
<td>n=107</td>
</tr>
<tr>
<td>Valores basais (média)</td>
<td>10,0</td>
<td>10,2</td>
</tr>
<tr>
<td>Alteração em relação aos valores basais (média ajustada)</td>
<td>-0,71</td>
<td>0,40</td>
</tr>
<tr>
<td>Diferença em relação ao placebo (média ajustada)</td>
<td>-1,1<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>GPP às 2 horas (mmol/L)</td>
<td>n=188</td>
<td>n=97</td>
</tr>
<tr>
<td>Valores basais (média)</td>
<td>14,6</td>
<td>14,7</td>
</tr>
<tr>
<td>Alteração em relação aos valores basais (média ajustada)</td>
<td>-2,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Diferença em relação ao placebo (média ajustada)</td>
<td>-2,6<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>

^a Médias dos QM (mínimos quadrados) ajustados para terapêutica hipoglicemicante prévia e valores basais

^b p<0,001

A gravidade da hiperglycemia no início dos estudos correlacionou-se com a resposta à sitagliptina. Os doentes que tinham níveis basais mais elevados de HbA1C (≥9%) registaram, nos dois estudos, comparativamente ao placebo, reduções de HbA1C numericamente superiores (Tabela 4).
Tabela 4 – Alteração dos níveis de HbA1C por valor basal (adaptado de Aschner et al., 2006 e de Raz et al., 2006).

<table>
<thead>
<tr>
<th></th>
<th>Estudo de 18 semanas</th>
<th></th>
<th>Estudo de 24 semanas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sitagliptina</td>
<td>Placebo</td>
<td>Sitagliptina</td>
<td>Placebo</td>
</tr>
<tr>
<td>HbA1C ≥9% no início do estudo</td>
<td>n=27</td>
<td>n=20</td>
<td>n=37</td>
<td>n=35</td>
</tr>
<tr>
<td>Valores basais (média)</td>
<td>9,48</td>
<td>9,48</td>
<td>9,59</td>
<td>9,46</td>
</tr>
<tr>
<td>Alteração em relação aos valores basais (média ajustada*)</td>
<td>-0,83</td>
<td>0,37</td>
<td>-1,27</td>
<td>0,25</td>
</tr>
<tr>
<td>Diferença em relação ao placebo (média ajustada*)</td>
<td>-1,20</td>
<td></td>
<td>-1,52</td>
<td></td>
</tr>
<tr>
<td>HbA1C ≥8% a <9% no início do estudo</td>
<td>n=70</td>
<td>n=25</td>
<td>n=62</td>
<td>n=82</td>
</tr>
<tr>
<td>Valores basais (média)</td>
<td>8,40</td>
<td>8,38</td>
<td>8,36</td>
<td>8,41</td>
</tr>
<tr>
<td>Alteração em relação aos valores basais (média ajustada*)</td>
<td>-0,42</td>
<td>0,19</td>
<td>-0,64</td>
<td>0,16</td>
</tr>
<tr>
<td>Diferença em relação ao placebo (média ajustada*)</td>
<td>-0,61</td>
<td></td>
<td>-0,80</td>
<td></td>
</tr>
<tr>
<td>HbA1C <8% no início do estudo</td>
<td>n=96</td>
<td>n=58</td>
<td>n=130</td>
<td>n=127</td>
</tr>
<tr>
<td>Valores basais (média)</td>
<td>7,37</td>
<td>7,41</td>
<td>7,39</td>
<td>7,39</td>
</tr>
<tr>
<td>Alteração em relação aos valores basais (média ajustada*)</td>
<td>-0,42</td>
<td>0,02</td>
<td>-0,4</td>
<td>0,17</td>
</tr>
<tr>
<td>Diferença em relação ao placebo (média ajustada*)</td>
<td>-0,44</td>
<td></td>
<td>-0,57</td>
<td></td>
</tr>
</tbody>
</table>

*a Médias dos QM (mínimos quadrados) ajustados para terapêutica hipoglicemiante prévia e valores basais

Ambos os estudos evidenciaram que o tratamento com sitagliptina exerceu um efeito neutro sobre o peso corporal em relação ao peso basal (Tabela 5).
Tabela 5 – Alteração no peso corporal em relação ao início do estudo (adaptado de Aschner et al., 2006 e de Raz et al., 2006).

<table>
<thead>
<tr>
<th></th>
<th>Estudo de 18 semanas</th>
<th></th>
<th>Estudo de 24 semanas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sitagliptina</td>
<td>Placebo</td>
<td>Sitagliptina</td>
<td>Placebo</td>
</tr>
<tr>
<td>Peso corporal (Kg)</td>
<td>n=172</td>
<td>n=77</td>
<td>n=193</td>
<td>n=174</td>
</tr>
<tr>
<td>Valores basais (média)</td>
<td>89,5</td>
<td>91,3</td>
<td>83,9</td>
<td>83,3</td>
</tr>
<tr>
<td>Alteração em relação aos valores basais (média ajustada<sup>a</sup>)</td>
<td>-0,6</td>
<td>-0,7</td>
<td>-0,2</td>
<td>-1,1</td>
</tr>
<tr>
<td>Diferença em relação ao placebo (média ajustada<sup>a</sup>)</td>
<td>0,1</td>
<td></td>
<td>0,9</td>
<td></td>
</tr>
</tbody>
</table>

^a Médias dos QM (mínimos quadrados) ajustados para terapêutica hipoglicemiante prévia e valores basais

O tratamento com sitagliptina, numa toma única diária de 100 mg, permitiu que mais doentes atingissem níveis alvo de HbA_{1C} menor que 7% (Gráfico 4).

![Percentagem de doentes que atingiu níveis de HbA1c <7%](image)

Gráfico 4 – Percentagem de doentes que atingiu níveis de HbA1c <7% (adaptado de Aschner et al., 2006 e de Raz et al., 2006).
VIII.2. Vildagliptina

A vildagliptina é um potente, selectivo e reversível inibidor da DPP-IV. As suas características farmacocinéticas têm sido avaliadas em vários estudos. Num desses estudos, foram administradas a doentes com diabetes tipo 2 diversas dosagens de vildagliptina e de placebo. A vildagliptina foi rapidamente absorvida apresentando um tempo de concentração plasmática máxima \((T_{\text{max}}) \) de 1 a 1,5 horas, com um pico de concentração e de exposição total a aumentar de forma proporcional à dose. A DPP-IV foi inibida em mais de 90% com todas as doses de vildagliptina, apresentando uma duração de inibição dependente da dose (He et al., 2007 a)).

Outro estudo demonstrou que a ingestão de alimentos não teve efeito na farmacocinética da vildagliptina. Os valores de \(T_{\text{max}} \) médio e de concentração plasmática máxima média foram quase idênticos após ingestão de alimentos e em jejum, em indivíduos saudáveis (Ristic e Bates, 2006).

Henness também demonstrou diversas características da vildagliptina. Este autor constatou que a biodisponibilidade oral absoluta da vildagliptina, em indivíduos saudáveis, foi de 85%. A ligação da vildagliptina às proteínas foi baixa, cerca de 9,3%, com igual distribuição entre o plasma e os glóbulos vermelhos. O volume de distribuição médio no estado estacionário após administração intravenosa foi de 71 L, sugerindo uma distribuição extravascular (Henness e Keam, 2006).

A rápida ligação inicial da vildagliptina ao centro catalítico da DPP-IV e sua subsequente dissociação lenta, faz com que a vildagliptina atue como um substrato lento, em vez de ser apenas um simples inibidor competitivo. Enquanto ocupa o centro catalítico da DPP-IV, a vildagliptina inibe a atividade enzimática da DPP-IV sobre o GLP-1 e o GIP durante um período de tempo longo. Como a vildagliptina se dissocia lentamente da DPP-IV, esta inativação é totalmente reversível (Ristic e Bates, 2006).

Num estudo de He et al., os efeitos da inibição da DPP-IV pela vildagliptina foram avaliados (He et al., 2007 b)). Relações de dose-resposta a doses orais únicas (10-400 mg) de vildagliptina foram analisadas através de uma PTGO, realizada 30 minutos após a administração de vildagliptina ou placebo. O resultado, apresentado no Gráfico 5,
demonstra que a actividade plasmática da DPP-IV não se alterou após a administração de placebo, sendo inibida rapidamente e de forma pronunciada após a administração de cada dose de vildagliptina. Tanto o início como a duração da inibição da DPP-IV foram dependentes da dose, mas a inibição a 90% ocorreu nos 45 minutos seguintes e manteve-se por mais de 4 horas após cada dose.

![Diagrama de inibição da DPP-IV por diferentes doses de vildagliptina](attachment:diagram.png)

Gráfico 5 — Inibição da DPP-IV por diferentes doses de vildagliptina (adaptado de He et al., 2007 b)).

Neste estudo, o efeito da vildagliptina nos níveis plasmáticos de insulina, glicose e glucagon também foi avaliado. Uma dose única de 100 mg de vildagliptina, aumentou a área sob a curva (AUC) da insulina e diminuiu a AUC da glicose e do glucagon (Gráfico 6) (He et al., 2007 b)).
Com base nestes resultados, He et al. conclui sugeriu que a vildagliptina potencia a função dos ilhéus ao aumentar a secreção de insulina dependente da glicose e a diminuir a secreção de glucagon para reduzir os níveis plasmáticos de glicose (He et al., 2007 b)). Um estudo de Pi-Sunyer, realizado num período de 24 semanas, com o intuito de avaliar a eficácia e a tolerância de diferentes doses de vildagliptina, apresentou resultados bastante satisfatórios. Após o período de avaliação, os valores de HbA1C diminuiram significativamente (Gráfico 7) (Pi-Sunyer et al., 2007).
Diabetes Mellitus

Gráfico 7 – Valores de HbA1C obtidos após 24 semanas de tratamento com diferentes doses de vildagliptina (adaptado de Pi-Sunyer et al., 2007).

Este estudo demonstrou que o tratamento com vildagliptina reduz os níveis de glicose plasmática em jejum (Gráfico 8). A vildagliptina foi bem tolerada e os efeitos adversos foram ligeiros ou moderados, em todos os grupos em análise. Cefaleia, infecção do tracto respiratório superior e nasofaringe foram os efeitos adversos observados mais frequentemente nos doentes que receberam vildagliptina. A incidência de efeitos adversos gastrintestinais foi baixa em todos os grupos de tratamento e não foram confirmados casos de hipoglicemia (Pi-Sunyer et al., 2007).
Gráfico 8 – Valores de glicose plasmática em jejum após 24 semanas de tratamento com diferentes doses de vildaglaptina (adaptado de Pi-Sunyer et al., 2007).

A vildaglaptina potencia a função das células dos ilhéus aumentando os níveis pós-prandiais de GLP-1 e GIP, na diabetes tipo 2. A sua capacidade de melhorar a sensibilidade das células β e α à glicose, resulta num aumento da secreção de insulina dependente da glicose e numa diminuição da secreção de glucagon. Os estudos demonstraram que a vildaglaptina suprime quer a secreção inadequada de glucagon, quer a produção endógena de glicose.

VIII.3. Associação Terapêutica

Uma terapêutica modelo da diabetes deverá abordar as fisiopatologias chave da diabetes tipo 2, nomeadamente a disfunção das células dos ilhéus, a resistência à insulina, produção excessiva de glicose hepática, proporcionando simultaneamente um melhor controlo glicémico. É importante referir que, uma terapêutica modelo deverá ser igualmente bem tolerada, sem aumentar o risco de hipoglicemia, ganhos ponderais, ou edema (Del Prato et al., 2005).
As associações terapêuticas, de que são exemplo as combinações dos inibidores da DPP-IV com glitazonas ou com a biguanida metformina, proporcionam a possibilidade de tratar os três mecanismos chave da fisiopatologia da diabetes tipo 2, produzindo simultaneamente um controlo glicémico melhorado, quando comparado com cada uma das monoterapias componentes (Bell, 2006; Del Prato et al., 2005).

Estudos realizados em animais (ratos) demonstraram um grande potencial de uma terapêutica de associação, entre os inibidores da DPP-IV e a metformina. A metformina já tinha provado a sua eficácia na melhoria da tolerância à glicose na diabetes tipo 2, por reduzir a resistência à insulina e por inibir a glicogenólise e a gliconeogênese hepática (Yasuda et al, 2002). Nestes estudos, os autores demonstraram que uma terapêutica de associação entre a metformina e um inibidor da DPP-IV, produzia um aumento dos níveis de GLP-1 em circulação, isto é, activos, do que uma mono terapêutica. Estes autores concluíram ainda que a metformina provavelmente actua por estimulação da secreção do GLP-1 e não por inibição da sua degradação. Hinke et al., já tinha anteriormente demonstrado que a metformina não tinha efeito na inibição da degradação do GLP-1 in vitro (Hinke et al., 2000).

Diversos estudos em humanos foram também realizados, com obtenção de resultados satisfatórios, existindo laboratórios farmacêuticos a desenvolver produtos para poderem ser comercializados.

Na sequência de todos estes desenvolvimentos, surgem já no mercado inibidores da DPP-IV que englobam na sua formulação a sitagliptina e a metformina. É exemplo o produto comercial Janumet®. Cada comprimido deste produto apresenta na sua composição 50 mg de sitagliptina (sob a forma de fosfato mono-hidratado) e 850 mg de cloridrato de metformina. Também pode ser apresentado com a composição de 50 mg de sitagliptina (sob a forma de fosfato mono-hidratado) e 1000 mg de cloridrato de metformina.

A sitagliptina inibe a DPP-IV, aumentando os níveis das incretinas activas, o que potencia a libertação de insulina, enquanto a metformina aumenta a sensibilidade periférica à insulina, conduzindo a um aumento da absorção de glicose pelos tecidos
periféricos. Devido às suas características, a sitagliptina reduz a secreção de glucagon, enquanto potencia a libertação de insulina, reduzindo consequentemente a produção hepática de glicose. A metformina reduz a produção de glicose hepática por um mecanismo distinto sem afectar os níveis de insulina ou de glucagon. A associação de sitagliptina com metformina actua por mecanismos de acção complementares de forma a melhorar o controlo glicémico em doentes com diabetes tipo 2 (Krentz e Bailey, 2005).
IX. Conclusão

A diabetes é uma doença crónica progressiva. O estabelecimento e manutenção do controlo glicêmico constituem os principais objectivos do tratamento da diabetes.

A diabetes tipo 2 é uma patologia metabólica complexa, caracterizada pelo aumento dos níveis de glicemia resultantes de defeitos na secreção de insulina, na acção da insulina, ou de ambos. Nos anos mais recentes, aumentaram as opções de tratamento da diabetes, principalmente com o desenvolvimento de novas terapêuticas orais antidiabéticas. Um dos desafios atuais da terapêutica da diabetes reside no desenvolvimento de abordagens mais abrangentes do tratamento, que permitam atingir o controlo glicêmico num maior número de doentes.

É objectivo deste trabalho dar a conhecer uma nova abordagem na terapêutica da diabetes tipo 2. O aumento dos níveis circulantes das hormonas incretinas para reduzir os níveis de glicemia constitui uma nova abordagem no tratamento deste tipo de diabetes.

É neste contexto que surgiram os inibidores da DPP-IV, uma classe de agentes antidiabéticos usada no tratamento da diabetes tipo 2. O mecanismo de acção dos inibidores da DPP-IV é diferente do de quaisquer outros medicamentos redutores de glicose actualmente disponíveis. Com a inibição desta enzima, os níveis circulantes das hormonas incretinas activas tornam-se mais elevados. Por consequente, existe mais estimulação das células β pancreáticas, logo, mais produção de insulina.

A apresentação aqui efectuada pretendeu também dar a conhecer alguns dos princípios activos que fazem parte desta nova classe.

Podemos concluir que a sitagliptina reduz quer os níveis de glicose plasmática em jejum (glicemia em jejum) quer os níveis de glicose pós-prandial (GPP). O tratamento com sitagliptina 100 mg de toma única diária proporcionou melhorias significativas na HbA1c, GJ, e GPP às duas horas em comparação com o placebo.
A vildaglaptiina apresentou valores da inibição da DPP-IV bastante satisfatórios. Tal como a sitaglaptiina, a vildaglaptiina também diminui os níveis de glicose plasmática em jejum.

Ambos os princípios activos apresentaram uma biodisponibilidade elevada e uma diminuição dos valores de HbA1C. Este último factor é muito importante pois a sua análise pode revelar o grau de controlo dos últimos dois a três meses.

A associação terapêutica era já uma prática corrente no tratamento da diabetes tipo 2. A associação de diferentes agentes antidiabéticos em comprimidos diferentes tinham o mesmo objectivo final, embora o problema residisse e reside no aumento da quantidade de comprimidos a tomar pelo doente. Com o surgimento no mercado de novos produtos, em que no mesmo comprimido estão englobados os dois princípios activos, o doente diminui a quantidade de comprimidos a tomar, sem dúvida um factor benéfico, pois o doente adere melhor à terapêutica. Outro factor a considerar poderá ser o factor económico. Perante os estudos aqui apresentados podemos concluir que numa associação terapêutica existem mecanismos de acção complementares. Os mecanismos de acção da sitaglaptiina e da metformina complementam-se, aumentando os níveis de hormonas incretinas, quer seja pela inibição da degradação, quer seja pela estimulação da secreção das hormonas, respectivamente.

Apesar dos avanços científicos disponibilizarem aos doentes diabéticos um vasto conjunto de soluções terapêuticas que lhes permitem ter hoje uma melhor qualidade de vida, é fundamental que cada vez mais se aposte na prevenção, de modo que a detecção da doença seja feita o mais cedo possível. Fundamental também é reconhecer os sinais precoces da diabetes e iniciar o tratamento para prevenir as complicações associadas à doença.

Viver com a diabetes exige um compromisso para toda a vida, manter a doença controlada é um desafio...
Bibliografia

ADA - American Diabetes Association. (2004). Gestacional Diabetes mellitus (Position Statement). Diabetes Care, 27 (S1), S88-S90. a)

ADA - American Diabetes Association. (2004). Standards of Medical Care in Diabetes. Diabetes Care, 27 (S1), S15. b)

Diabetes Mellitus

FDA - Food and Drug Administration. [Em linha]. Disponível em <http://www.fda.gov/bbs/topics/NEWS/2006/NEW01492.html>. [consultado em 03/02/2009].

Diabetes Mellitus

